Computer Networks(2015 Pattern) Unit VI – Application Layer

By Prof. A.R.Jain

PVG's COE, Nashik

Note: Material for this presentations are taken from Internet and books and only being used for student reference

Outline

HyperTextTransfer Protocol (HTTP),

FTP,

Email: SMTP, MIME, POP3, Webmail,

Domain Name System (DNS),

TELNET,

Dynamic Host Control Protocol (DHCP),

Simple Network Management Protocol (SNMP).

Web and HTTP

<u>First some jargon</u>

- Web page consists of objects
- Object can be HTML file, JPEG image, Java applet, audio file,...
- Web page consists of base HTML-file which includes several referenced objects
- Each object is addressable by a URL
- Example URL:

www.someschool.edu/someDept/pic.gif

host name

path name

HTTP overview

HTTP: hypertext transfer protocol

- Web's application layer protocol
- client/server model
 - *client:* browser that requests, receives, "displays" Web objects
 - *server*: Web server sends objects in response to requests

HTTP uses port no 80

HTTP overview (continued)

Uses TCP:

- client initiates TCP connection (creates socket) to server, port 80
- server accepts TCP connection from client
- HTTP messages (application-layer protocol messages) exchanged between browser (HTTP client) and Web server (HTTP server)
- TCP connection closed

HTTP is "stateless"

 server maintains no information about past client requests

HTTP connections

Nonpersistent HTTP

- At most one object is sent over a TCP connection.
- New connection must be established and maintained for each requested object
- requires 2 RTTs per object
- OS overhead for *each* TCP connection

Persistent HTTP

- Multiple objects can be sent over single TCP connection between client and server.
- server leaves connection open after sending response
- subsequent HTTP messages between same client/server sent over open connection
- client sends requests as soon as it encounters a referenced object
- as little as one RTT for all the referenced objects

Nonpersistent HTTP Suppose user enters URL(contains text, references to 10 jpeg images) 1a. HTTP client initiates TCP connection to **HTTP** server **1b.** HTTP server waiting for TCP connection at port 80. "accepts" connection, notifying client 2. HTTP client sends HTTP request message into TCP connection socket. Message indicates that 3. HTTP server receives request message, forms *response message* client wants object. containing requested object, and sends message into its socket time 9/19/2017

Non-Persistent HTTP: Response time

Definition of RTT(RoundTripTime):

time for a small packet to travel from client to server and back.

Response time:

- one RTT to initiate TCP connection
- one RTT for HTTP request
- file transmission time
- total = 2RTT + transmit time

HTTP Message Formats

Two types of message

HTTP Response Message

HTTP request message

HTTP request message Example

- HTTP request message:
 - ASCII (human-readable format)

Uploading form input

Post method:

- Web page often includes form input
- Input is uploaded to server in entity body

GET method:

- Uses GET method
- Input is uploaded in URL field of request line:

Example

www.somesite.com/animalsea
rch?monkeys&banana

F	HTTP Methods							
	Method	Description						
	GET	Request to read a Web page						
	HEAD	Request to read a Web page's header						
	PUT	Request to store a Web page						
	POST	Append to a named resource (e.g., a Web page)						
	DELETE	Remove the Web page						
	TRACE	Echo the incoming request						
	CONNECT	Reserved for future use						
	OPTIONS	Query certain options						

TRACE method is used for debugging. It instructs the server to send back the request. This is useful when requests are not processed correctly and the client wants to know it sent the proper request.

CONNECT - is not used at the moment

OPTIONS – provides a way for the client to query the server about its properties or those of a specified file

HTTP response message

Version	Sp	Status	Code	Sp	Phras	se	Cr		lf		Status Line
Header field name				value		Cr			lf		
:									Header Line		
Header f	1	value		(Cr		lf				
Cr If			in in				÷				
Entity Body											

HTTP response message example

HTTP Version differences

HTTP/1.0

Have only 16 status codes

Provides only basic authentication

Uses Non persistent connection

RTT is more so bandwidth waste is vast

Stateless

Supports only GET POST and HEAD method

<u>HTTP/1.1</u>

Have introduced new 24 status code

Provides strong authentication

Uses Persistent connection

RTT is less so bandwidth utilization is good

Uses cookies as state management mechanism

Supports GET, POST, HEAD, PUT and DELETE

Web caches (proxy server)

Goal: satisfy client request without involving origin server

- user sets browser: Web accesses via cache
- browser sends all HTTP requests to cache
 - object in cache: cache returns object
 - else cache requests object from origin server, then returns object to client

Outline

Hyper Text Transfer Protocol (HTTP),

FTP,

Email: SMTP, MIME, POP3, Webmail,

Domain Name System (DNS),

TELNET,

Dynamic Host Control Protocol (DHCP),

Simple Network Management Protocol (SNMP).

FTP (File Transfer Protocol)

• Objective

- 1. Allow file sharing between remote machine
- 2. Transfer data reliably and efficiently
- FTP Protocol falls within client server model
- Both client & server have 2 process allowing information (Data & command) to be managed , they are
- 1. DTP(Data transfer Process)
- 2. PI(Protocol Interpreter)

FTP model/connection

FTP: the file transfer protocol

- During FTP Connection 2 transmission channels are open
 - 1. Control Channel (For command)
 - 2. Data Channel (For data)
- Control uses port no 21
- Data connection uses Port no 20

FTP: separate control, data connections

- FTP client contacts FTP server at port 21
- client authorized over control connection
- client browses remote directory by sending commands over control connection.
- when server receives file transfer command, server opens 2nd TCP connection (for file) to client
- after transferring one file, server closes data connection.
- FTP server maintains "state": current directory, earlier authentication

FTP transmission modes

- Stream mode: Data is sent as a continuous stream, relieving FTP from doing any processing. Rather, all processing is left up to TCP. No End-of-file indicator is needed, unless the data is divided into records.
- **Block mode**: FTP breaks the data into several blocks (block header, byte count, and data field) and then passes it on to TCP.
- **Compressed mode:** Data is compressed using a simple algorithm (usually run-length encoding).

FTP commands, responses

Sample commands:

- sent as ASCII text over control channel
- USER username
- **PASS** password
- **LIST** return list of file in current directory
- **RETR filename** retrieves (gets) file
- **STOR filename** stores (puts) file onto remote host

Sample return codes

- status code and phrase (as in HTTP)
- 331 Username OK, password required
- 125 data connection already open; transfer starting
- 425 Can't open data connection
- 452 Error writing file

Comparison between HTTP and FTP

- HTTP uses TCP
- Send its control information in-band
- HTTP is stateless
- Port No is 80

- FTP uses TCP
- Only one TCP connection Two parallel TCP connection, one between client and server for data and one for control
 - Send its control information outof-band
 - FTP maintains State
 - Port no is 20 and 21

Question Time! What is meant by Anonymous FTP?

Outline

Hyper Text Transfer Protocol (HTTP),

FTP,

Email: SMTP, MIME, POP3, Webmail,

Domain Name System (DNS),

TELNET,

Dynamic Host Control Protocol (DHCP),

Simple Network Management Protocol (SNMP).

What is SMTP?

- The standard for e-mail transmissions across the Internet
- It is defined in RFC 821
- It is a relatively simple, text-based protocol
- Port No is 25
- It uses reliable connection to send mail. For the same it uses TCP connection.

SMTP

- SMTP clients and servers have two main components
 - User Agents Prepares the message, encloses it in an envelope.
 - Mail Transfer Agent (MTA) – Transfers the mail across the internet

USER AGENT

The user agent (UA) provides service to the user to make the process of sending and receiving a message easier.

What is Mail?

Envelope Mail From: forouzan@deanza.edu RCPT To: fegan@comnet.com From: Behrouz Forouzan To: Sophia Fegan Header Date: 1/5/98 **Subject:** Network Message Dear Mrs. Fegan: We want to inform you that our network is working pro-Body perly after the last repair. Yours truly, Behrouz Forouzan

9/19/2017

MESSAGE TRANSFER AGENT: SMTP

The actual mail transfer requires message transfer agents (MTAs). The protocol that defines the MTA client and server in the Internet is called Simple Mail Transfer Protocol (SMTP).

Table 20.4Commands

Keyword	Argument(s)					
HELO	Sender's host name					
MAIL FROM	Sender of the message					
RCPT TO	Intended recipient of the message					
DATA	Body of the mail					
QUIT						
RSET						
VRFY	Name of recipient to be verified					
NOOP						
TURN						
EXPN	Mailing list to be expanded					
HELP	Command name					
SEND FROM	Intended recipient of the message					
SMOL FROM	Intended recipient of the message					
SMAL FROM	Intended recipient of the message					
Status Codes

The Server responds with a 3 digit code that may be followed by text info

- 2## Success
- 3## Command can be accepted with more information
- 4## Command was rejected, but error condition is temporary
- 5## Command rejected, Bad User!

Extensions to SMTP

MIME – Multipurpose Internet Mail Extensions

- Transforms non-ASCII data to NVT (Network Virtual Terminal) ASCII data
 - Text
 - Application
 - Image
 - Audio
 - Video

MIME and Base64 Encoding

- If the internet is the information highway, then the path for email is a narrow tunnel
 - Only very small vehicles can pass trough
- Then how do you send a big truck through a small ravine?
 - You have to break it down to smaller pieces and transport the pieces through the ravine, and reassemble the truck

MIME and Base64 Encoding

- The same happens when you send a file attachment via email.
- This is known as encoding
 - the binary data (256 bits) is transformed to ASCII text (128 bits
 - allowing it to fit through the tunnel
- On the recipient's end, the data is decoded and the original file is rebuilt.

MESSAGE ACCESS AGENT: POP AND IMAP

The third stage of mail delivery uses a message access agent; the client must pull messages from the server. Currently two message access protocols are available: Post Office Protocol, version 3 (POP3) and Internet Mail Access Protocol, version 4.

The topics discussed in this section include:

POP3 IMAP4

POP3

- Starts when the user starts the mail reader
- Mail reader calls up the ISP (if there is no connection) and establishes a TCP connection with the message transfer agent on port 110;
 - Authorization
 - Having user logged in by sending its username and password
 - Transactions
 - User collecting the e-mails and marking them for deletion
 - Update
 - Causes the e-mails to be deleted

IMAP

- POP3 works fine for users with one e-mail account with one ISP, accessed from one PC
 - If mail was accessed from different locations, user may loose e-mails, security issues may appear, etc
- An alternative final delivery protocol, IMAP (Internet Message Access Protocol), defined in RFC2060
 - Instead assuming that all messages will be downloaded and work offline after that (like POP3), IMAP assumes that all e-mail will remain on the server indefinite in multiple mailboxes
 - Provides extensive mechanisms to read messages or parts of messages, mechanisms to create, destroy and manipulate multiple mailboxes.

POP3 vs. IMAP

Feature	POP3	IMAP	
Where is protocol defined?	RFC 1939	RFC 2060	
Which TCP port is used?	110	143	
Where is e-mail stored?	User's PC	Server	
Where is e-mail read?	Off-line	On-line	
Connect time required?	Little	Much	
Use of server resources?	Minimal	Extensive	
Multiple mailboxes?	No	Yes	
Who backs up mailboxes?	User	ISP	
Good for mobile users?	No	Yes	
User control over downloading?	Little	Great	
Partial message downloads?	No	Yes	
Are disk quotas a problem?	No	Could be in time	
Simple to implement?	Yes	No	
Widespread support?	Yes	Growing	

Outline

HyperTextTransfer Protocol (HTTP),

FTP,

Email: SMTP, MIME, POP3, Webmail,

Domain Name System (DNS),

TELNET,

Dynamic Host Control Protocol (DHCP),

Simple Network Management Protocol (SNMP).

DNS (Domain Name System)Basic

IP addresses are difficult to remember

Need some mechanisms to translate gmail.com to the IP address.

To solve this problem DNS was invented

DNS is a hierarchical, domain-based naming scheme and a distributed database system for implementing this naming scheme

Usage: Map URL name into an IP address

DNS: Domain Name System Basic:

Maps URL to IP address and vice versa

Runs over UDP and TCP

Uses port No 53

Application layer protocol

DNS : DNS services

hostname to IP address translation

host aliasing

Canonical, alias names

mail server aliasing

load distribution

 replicated Web servers: set of IP addresses for one canonical name

DNS components

Name space

Name Servers

Resolver

The Name Space

The name space is the structure of the DNS database

An inverted tree with the root node at the top

- Each node has a label
 - The root node has a null label, written as ""

DNS Name Space (Top level Domain)

DNS Name Resolver

DNS Resolver (Types of Servers)

Root DNS Server

- 13 root DNS server
- Labeled A to M

Top-Level Domain(TLD) Servers

- Responsible for top level domains
- Ex. Com,org,edu,gov and all country domains

Authoritative DNS Servers

- Contains DNS record for every publically accessible organization on Internet
- DNS record maps names to IP address

DNS Resolver ways

Resolving can be done in two ways

Iterative resolution

Recursive resolution

Resource Records

- When a resolver gives a domain name to DNS, what it gets back are the resource records associated with that name;
- Thus the primary function of DNS is to map domain names onto resource records
- □ Types of Resource Record are as given in the table.

A	Host Addresses
PTR	Reverse address name mapping
CNAME	Aliases
МХ	Mail exchange for the domain
9/19/2017	Authoritative Name Servers

Parts Resource Records

Outline

Hyper Text Transfer Protocol (HTTP),

FTP,

Email: SMTP, MIME, POP3, Webmail,

Domain Name System (DNS),

TELNET,

Dynamic Host Control Protocol (DHCP),

Simple Network Management Protocol (SNMP).

TELNET vs. telnet

- TELNET is a *protocol* that provides "a general, bi-directional, eight-bit byte oriented communications facility".
- **telnet** is a *program* that supports the TELNET protocol over TCP.
- Many application protocols are built upon the TELNET protocol.

TELNET Protocol

TELNET is a general-purpose client-server application program.

TELNET is an abbreviation for TErminaL NETwork

Uses Port No 23 and TCP Protocol

Used for Virtual terminal service

TELNET enables the establishment of a connection to a remote system in such a way that the local terminal appears to be a terminal at the remote system.

Network Virtual Terminal

Via a universal interface called the Network Virtual Terminal (NVT) character set, the TELNET client translates characters (data or commands) that come from the local terminal into NVT form and delivers them to the network. The TELNET server translates data and commands from NVT form into the form acceptable by the remote computer.

Network Virtual Terminal

- intermediate representation of a generic terminal.
- provides a standard language for communication of terminal control functions.
- NVT uses two sets of characters, one for data(0) and other for control(1)

TELNET Command Structure

	Interpret	Command	Option Negotiated	
	Command	Code	negotiated	
	byte 1	byte 2	byte 3	
Sampl	le:			
	255	253	24	
	L► IAC	L → WILL	L∍Termir	nal type

Outline

HyperTextTransfer Protocol (HTTP),

FTP,

Email: SMTP, MIME, POP3, Webmail,

Domain Name System (DNS),

TELNET,

Dynamic Host Control Protocol (DHCP),

Simple Network Management Protocol (SNMP).

Need of Dynamic Assignment of IP addresses

Need of Dynamic assignment of IP addresses

- IP addresses are assigned on-demand
- Avoid manual IP configuration
- Support mobility of laptops
- Support temporary allocation of IP addresses

Three Protocols:

- RARP (until 1985, no longer used)
- BOOTP (1985-1993)
- DHCP (since 1993)

Only DHCP is widely used today.
DHCP

- Designed in 1993
- Uses UDP
- An extension of BOOTP (Many similarities to BOOTP)
- IP addresses are assigned dynamically on demand
- Supports temporary allocation ("leases") of IP addresses
- DHCP client can acquire all IP configuration parameters
- DHCP can interoperate with BOOTP clients.

DHCP Interaction (simplified)

BOOTP/DHCP Message Format

OpCode	Hardware Type	Hardware Address Length	Hop Count		
Number of Seconds		Unused (in BOOTP) Flags (in DHCP)			
	Transa	ction ID			
Client IP address					
Your IP address					
Server IP address					
	Gateway I	P address			
Client hardware address (16 bytes)					
Server host name (64 bytes)					
Boot file name (128 bytes)					
Options					
(There are >100 different options)			9/19/2017		

BOOTP/DHCP

• **OpCode**: 1 (Request), 2(Reply)

Note: DHCP message type is sent in an option

- Hardware Type: 1 (for Ethernet)
- Hardware address length: 6 (for Ethernet)
- Hop count: set to 0 by client
- **Transaction ID**: Integer (used to match reply to response)
- **Seconds:** number of seconds since the client started to boot
- Client IP address, Your IP address, server IP address, Gateway IP address, client hardware address, server host name, boot file name:

client fills in the information that it has, leaves rest blank

DHCP Message Type

Value	Message Type	
1	DHCPDISCOVER	
2	DHCPOFFER	
3	DHCPREQUEST	
4	DHCPDECLINE	
5	DHCPACK	
6	DHCPNAK	
7	DHCPRELEASE	
8	DHCPINFORM 9/19/2	2017

Outline

HyperTextTransfer Protocol (HTTP),

FTP,

Email: SMTP, MIME, POP3, Webmail,

Domain Name System (DNS),

TELNET,

Dynamic Host Control Protocol (DHCP),

Simple Network Management Protocol (SNMP).

971972017

What is Network Management?

Basic tasks that fall under this category are:

Configuration Management

•Keeping track of device settings and how they function

•Fault Management

•Dealing with problems and emergencies in the network (router stops routing, server loses power, etc.)

Performance Management

How smoothly is the network running?Can it handle the workload it currently has?

Functional Areas of Network Management

Configuration Management - inventory, configuration, provisioning Fault Management - reactive and proactive network fault management Performance Management - # of packets dropped, timeouts, collisions, CRC errors Security Management - SNMP doesn't provide much here Accounting Management - cost management and chargeback assessment Asset Management - statistics of equipment, facility, and administration personnel Planning Management - analysis of trends to help justify a network upgrade or bandwidth increase

What is SNMP?

 SNMP that allows management of devices on the network like servers, workstations, routers, switches and other managed devices.

Comprised of agents and managers

•Agent - process running on each managed node collecting information about the device it is running on.

•Manager - process running on a management workstation that requests information about devices on the network.

Client Pull & Server Push

• SNMP is a "client pull" model

The management system (client) "pulls" data from the agent (server).

• SNMP is a "server push" model

The agent (server) "pushes" out a trap message to a (client) management system

Ports & UDP
•SNMP uses User Datagram Protocol (UDP)
 •UDP Port 161 - SNMP Messages •UDP Port 162 - SNMP Trap Messages

The Three Parts of SNMP

SNMP network management is based on three parts:

•SNMP Protocol

Defines format of messages exchanged by management systems and agents.
Specifies the Get, GetNext, Set, and Trap operations

•Structure of Management Information (SMI)

•Rules specifying the format used to define objects managed on the network that the SNMP protocol accesses

•Management Information Base (MIB)

•List of objects and how they are accessed

Figure Components of network management on the Internet Management **SNMP** SMI MIB 9/19/2017

Four Basic Operations

•Get

Retrieves the value of a MIB variable stored on the agent machine

(integer, string, or address of another MIB variable)

•GetNext

Retrieves the next value of the next lexical MIB variable

•Set

Changes the value of a MIB variable

•Trap

typically a notification of something unexpected, like an error

Languages of SNMP

•Structure of Management Information (SMI)

specifies the format used for defining managed objects that are accessed via the SNMP protocol

•Abstract Syntax Notation One (ASN.1)

used to define the format of SNMP messages and managed objects (MIB modules) using an unambiguous data description format

•Basic Encoding Rules (BER)

used to encode the SNMP messages into a format suitable for transmission across a network

SNMP Data Types

- •INTEGER -- signed 32-bit integer
- •OCTET STRING
- •OBJECT IDENTIFIER (OID)
- •NULL -- not actually data type, but data value
- •IpAddress -- OCTET STRING of size 4, in network byte order (B.E.)
- •Counter -- unsigned 32-bit integer (rolls over)
- •Gauge -- unsigned 32-bit integer (will top out and stay there)
- •TimeTicks -- unsigned 32-bit integer (rolls over after 497 days)
- •Opaque -- used to create new data types not in SNMPv1
- •DateAndTime, DisplayString, MacAddress, PhysAddress, TimeInterval, TimeStamp, TruthValue, VariablePointer -- textual conventions used as types

Commercial SNMP Applications

Here are some of the various SNMP Management products available today:

•http://www.hp.com/go/openview/ **HP** OpenView •http://www.tivoli.com/ •http://www.novell.com/products/managewise/ •http://www.sun.com/solstice/ •http://www.microsoft.com/smsmgmt/ •http://www.compaq.com/products/servers/management/ •http://www.redpt.com/ •http://www.empiretech.com/ •ftp://ftp.cinco.com/users/cinco/demo/ •http://www.netinst.com/html/snmp.html •http://www.netinst.com/html/Observer.html Observer •http://www.gordian.com/products_technologies/snmp.html •http://www.castlerock.com/ •http://www.adventnet.com/ •http://www.smplsft.com/

IBM NetView Novell ManageWise Sun MicroSystems Solstice **Microsoft SMS Server Compaq Insight Manger SnmpQL - ODBC Compliant Empire Technologies Cinco Networks NetXray** SNMP Collector (Win9X/NT) Gordian's SNMP Agent **Castle Rock Computing** Advent Network Management SimpleAgent, SimpleTester 9/19/2017

References

- <u>http://highered.mheducation.com/sites/0072460601/student_vi</u> <u>ew0/</u>
- <a>www.wtcs.org/snmp4tpc/files/reference/francois/snmp.ppt
- ece626web.groups.et.byu.net/Lectures/ch26.ppt
- https://www.slideshare.net/MaiyurHossain/http-48129051