
Introduction 1-2

Chapter 2: ROAD MAP

 Transport Layer Introduction

 Port Address

 UDP

 TCP

 Socket Programming using TCP and UDP

 SCTP

 RTP

 TCP in wireless network

 Quality of services

Introduction 1-3

Chapter 2: ROAD MAP

 Transport Layer Introduction

 Port Address

 UDP

 TCP

 Socket Programming using TCP and UDP

 SCTP

 RTP

 TCP in wireless network

 Quality of services

Transport Layer 3-4

Transport Layer

Services provided by
transport layer
 Process to Process

delivery

 Connection less as well as
connection oriented data
delivery

 Error control

 multiplexing/demultiplexi
ng

 reliable data transfer

 flow control

 congestion control

 learn about transport
layer protocols in the
Internet:
 UDP: connectionless

transport

 TCP: connection-oriented
transport

 STCP :Combination of TCP
and UDP

 RTP : Real time transport
protocol

23.5

Process to Process Data Delivery

Addressing

• Mac Address (48 bit)

• Physical address

• NIC Card

Data Link
Layer

• IP Address (32 or 128 bit)

• Logical Address

• Machine

Network
Layer

• Port Address (16 bit)

• Logical Address

• Application

Transport
Layer

Introduction 1-6

Transport Layer 3-7

Transport services and protocols

 provide logical communication
between app processes
running on different hosts

 transport protocols run in
end systems

 send side: breaks app
messages into segments,
passes to network layer

 rcv side: reassembles
segments into messages,
passes to app layer

 more than one transport
protocol available to apps

 Internet: TCP and UDP
and SCTP

application

transport

network

data link

physical

application

transport

network

data link

physical

Introduction 1-8

Chapter 2: ROAD MAP

 Transport Layer Introduction

 Port Address

 UDP

 TCP

 Socket Programming using TCP and UDP

 SCTP

 RTP

 TCP in wireless network

 Quality of services

23.9

IP addresses versus port numbers

23.10

PORT ranges by IANA (Internet Assigned

Number Authority)

Port Ranges by IANA

• From 0-1023

• Assigned & controlled by IANA

• These are port no.s for servers ex.
FTP(20,21),SMTP (25)

Well Known

• From 1024-49151

• Not assigned & controlled by IANA

• Can only be registered with IANA

• Ex. MySQL(3306), MongoDB (27017)

Registered

• From 49152-65535

• Nighter controlled nor registered by IANA

• They can be used by any client Program(Process)
Dynamic

Introduction 1-11

23.12

Socket address

Transport Service Primitives

The primitives for a simple transport service.

Transport Service Primitives
(2)

The nesting of TPDUs, packets, and frames.

Berkeley Sockets

The socket primitives for TCP.

23.16

Multiplexing and demultiplexing

Transport Layer 3-17

Multiplexing/demultiplexing

delivering received segments

to correct socket

Demultiplexing at rcv host:

Multiplexing at send host:

gathering data from multiple

sockets, enveloping data with

header (later used for

demultiplexing)

Transport Layer 3-18

How demultiplexing works
 host receives IP datagrams

 each datagram has source
IP address, destination IP
address

 each datagram carries 1
transport-layer segment

 each segment has source,
destination port number

 host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application

data

(message)

other header fields

TCP/UDP segment format

Transport Layer 3-19

Internet transport-layer protocols

 reliable, in-order
delivery (TCP)
 congestion control

 flow control

 connection setup

 unreliable, unordered
delivery: UDP
 Faster data delivery

 Stream Control
Transmission Protocol
(SCTP):
 Faster and reliable data
delivery

application

transport

network

data link

physical
network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

application

transport

network

data link

physical

Introduction 1-20

Chapter 2: ROAD MAP

 Transport Layer Introduction

 Port Address

 UDP (User datagram protocol)

 TCP

 Socket Programming using TCP and UDP

 SCTP

 RTP

 TCP in wireless network

 Quality of services

USER DATAGRAM PROTOCOL (UDP)

The User Datagram Protocol (UDP) is called a

connectionless, unreliable transport protocol. It does

not add anything to the services of IP except to provide

process-to-process communication instead of host-to-

host communication.

Well-Known Ports for UDP

User Datagram

Checksum

UDP Operation

Use of UDP

Topics discussed in this section:

23.22

Well-known ports used with UDP

23.23

User datagram format (UDP Header Format)

UDP Pseudo Header

Introduction 1-24

UDP Operations

• Connectionless service

• No Flow and error control except
checksum

• Encapsulation and Decapsulation of
messages in IP datagram

• Queing

23.26

Queues in UDP

Uses of UDP

Simple Request reply communication

Suitable for process with internal flow and control
mechanisms. Eg. TFTP

The Real-Time Transport Protocol

Used in route updating protocol like Routing Information
Protocol(RIP)

Remote Procedure Call(RPC)

Suitable for Multicasting. Multicasting capability
is inbuilt in UDP software's

Introduction 1-28

Chapter 2: ROAD MAP

 Transport Layer Introduction

 Port Address

 UDP

 TCP (Transmission control protocol)

 Socket Programming using TCP and UDP

 SCTP

 RTP

 TCP in wireless network

 Quality of services

TCP (Transmission control protocol)

TCP is a connection-oriented protocol; it creates a

virtual connection between two TCPs to send data. In

addition, TCP uses flow and error control mechanisms

at the transport level.

TSP Vs UDP

TCP Services

TCP Stream delivery

Segment (TCP Header)

A TCP Connection

Flow Control

Error Control

Topics discussed in this section:

Introduction 1-30

The TCP Service Model

Some assigned ports.
Port Protocol Use
21 FTP File transfer
23 Telnet Remote login

25 SMTP E-mail

69 TFTP Trivial File Transfer Protocol

79 Finger Lookup info about a user
80 HTTP World Wide Web

110 POP-3 Remote e-mail access

119 NNTP USENET news

23.32

Stream delivery

23.33

Sending and receiving buffers

23.34

TCP segments

23.35

TCP segment format (TCP Header)

23.36

Control field

23.37

Description of flags in the control field

23.38

TCP Connection establishment using three-way handshaking

Connection Establishment (3)

Three protocol scenarios for establishing a connection using a three-way

handshake. CR denotes CONNECTION REQUEST.

(a) Normal operation,

(b) Old CONNECTION REQUEST appearing out of nowhere.

(c) Duplicate CONNECTION REQUEST and duplicate ACK.

Connection Release

Abrupt disconnection with loss of data.

Connection Release (2)

The two-army problem.

23.42

TCP Connection termination using three-way handshaking

Connection Release (3)

Four protocol scenarios for releasing a
connection. (a) Normal case of a three-way
handshake. (b) final ACK lost.

6-14, a, b

Connection Release (4)

(c) Response lost. (d) Response lost and
subsequent DRs lost.

6-14, c,d

TCP Transmission Policy(Flow control)

Window management in TCP.

Sender Receiver

The senders application performs a

2K write to the receivers buffer,

which is now half full.

SEQ=02K
Application

does a 2K write

Empty

0 4K

2K

Sender Receiver

SEQ=02K

ACK=2048 WIN=2048

Application

does a 2K write

Empty

0 4K

2K

The receiver acknowledges the first

2048 bytes and informs the sender

that there is space in the buffer for

2048 bytes.

Sender Receiver

SEQ=02K

ACK=2048 WIN=2048

Application

does a 2K write

SEQ=20482K

Application

does a 2K write

Empty

0 4K

Full

2K

The sender’s application writes

another 2K. The receivers buffer is

now full and the sender is blocked.

Sender Receiver

SEQ=02K

ACK=2048 WIN=2048

SEQ=20482K

ACK=4096 WIN=0

Application

does a 2K write

Application

does a 2K write

Sender is

blocked

Empty

0 4K

Full

2K

The receiver acknowledges the next

2048 (total of 4096) bytes and

informs the sender that there is no

space in the buffer. The sender is still

blocked.

Sender Receiver

SEQ=02K

ACK=2048 WIN=2048

SEQ=20482K

ACK=4096 WIN=0

Application

does a 2K write

Application

does a 2K write

{Sender is

blocked

ACK=4096 WIN=2048

Sender may

send up to 2K

Empty

0 4K

Full

2K

2K

The receiver clears 2048 bytes from

the buffer and informs the sender that

this space is available for use. The

sender is now unblocked and may

send 2K.

Sender Receiver

SEQ=02K

ACK=2048 WIN=2048

SEQ=20482K

ACK=4096 WIN=0

ACK=4096 WIN=2048

Application

does a 2K write

Application

does a 2K write

SEQ=40961K

Application

does a 1K write

{Sender is

blocked

Sender may

send up to 2K

Empty

0 4K

Full

2K

2K

2K1K

The sender’s application writes

another 1K. The receivers buffer

now has 1K of space available.

Silly window syndrome Problem

Silly window syndrome.

Solution to Silly window syndrome Problem

 There are two solutions

1. Nagle’s solution

2. Clark’s solution

Introduction 1-53

Nagle's algorithm

Purpose is to allow the sender TCP to make efficient use of the
network, while still being responsive to the sender applications.

Idea:

If application data comes in byte by byte, send first byte only.
Then buffer all application data till until ACK for first byte comes
in.
If network is slow and application is fast, the second segment will
contain a lot of data.
Send second segment and buffer all data till ACK for second
segment comes in.
An exception to this rule is to always send (not wait for ACK) if
enough data for half the receiver window or MSS(Maximum
segment size) is accumulated.

Clark's algorithm

Purpose is to prevent the receiver from sending a window update
for 1byte.

Idea:

Receiver is forced to wait until it has a decent amount of space
available

The receiver should not send a window update until it can
handle the maximum segment size it declared when the connection
was established or until its buffer is half empty, whichever is
smaller

TCP congestion control

We looked at how TCP handles flow control. In addition we know
the congestion happens. The only real way to handle congestion is
for the sender to reduce sending rate.

So how does on detect congestion ?
In old days, packets were lost due to transmission errors and
congestion. But nowadays, transmission errors are very rare (except
for wireless). So, TCP assumes a lost packet as an indicator of
congestion.

So does TCP deal with congestion ?
It maintains an indicator of network capacity, called the congestion
window

TCP Congestion Control

(a) A fast network feeding a low capacity receiver.
(b) A slow network feeding a high-capacity receiver.

TCP congestion control

In essence TCP deals with two potential problems separately:

Problem Solution
Receiver capacity Receiver window (rwnd)
Network capacity Congestion window (cwnd)

Each window reflect the number of bytes the sender may transmit.
The sender sends the minimum of these two sizes. This size is the
effective window.

TCP Congestion Control – 3 Stages

TCP uses these stages in updating cwnd.

1. Slow start: Initial state. Rapidly grow cwnd

2. Congestion avoidance: Slowly grow cwnd.

3. Congestion detection : (Multiplicative decrease)

}
Control amount of
data injected into
network

TCP Congestion Control – Slow start

When connection is established , the sender initializes the
congestion window to the size of the maximum segment in use on
the connection.

It then sends the one maximum segment

If this segment is acknowledged before timeout occurs then it
doubles the segment size

This is continued until the timeout occurs or receivers window
size is reached

TCP Congestion Control

An example of the Internet congestion algorithm.

TCP Congestion Control-Congestion Avoidance

When the size of congestion window

reaches the slow start threshold, the slow

start phase stops and the additive phase

begins.

Introduction 1-62

TCP Congestion Control-Congestion
Detection

 If congestion occurs the congestion window

size must be decreased.

 That means when a timer time outs or when

3 Acks are received the size of the

threshold is dropped to ½ (multiplicative

decrease)

1-63

Introduction 1-64

Chapter 2: ROAD MAP

 Transport Layer Introduction

 Port Address

 UDP

 TCP

 Socket Programming using TCP and UDP

 SCTP

 RTP

 TCP in wireless network

 Quality of services

65

Socket programming

Socket API

 client/server paradigm

 two types of transport service via socket
API:

 unreliable datagram (UDP)

 reliable, byte stream-oriented (TCP)

Goal: learn how to build client/server application that
communicate using sockets

66

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one
process to another

process

TCP with

buffers,

variables

socket

controlled by

application

developer

controlled by

operating

system

host or

server

process

TCP with

buffers,

variables

socket

controlled by

application

developer

controlled by

operating

system

host or

server

internet

67

Socket programming with TCP

Client must contact server

 server process must first
be running

 server must have created
socket (door) that
welcomes client’s contact

Client contacts server by:

 creating client-local TCP
socket

 specifying IP address, port
number of server process

 When client creates
socket: client TCP
establishes connection to
server TCP

 When contacted by client,
server TCP creates new
socket for server process to
communicate with client

 allows server to talk with
multiple clients

 source port numbers
used to distinguish
clients

TCP provides reliable, in-order

transfer of bytes (“pipe”)

between client and server

application viewpoint

2: Application Layer 68

Client/server socket interaction: TCP

wait for incoming

connection request
connectionSocket =

welcomeSocket.accept()

create socket,
port=x, for

incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close

connectionSocket

read reply from

clientSocket

close

clientSocket

Server (running on hostid) Client

send request using

clientSocketread request from

connectionSocket

write reply to

connectionSocket

TCP

connection setup

2: Application Layer 69

Socket programming with TCP

Example client-server app:

1) client reads line from standard input

(inFromUser stream) , sends to server via

socket (outToServer stream)

2) server reads line from socket

3) server converts line to uppercase, sends back to

client

4) client reads, prints modified line from socket

(inFromServer stream)

2: Application Layer 70

Example: Java client (TCP)

import java.io.*;

import java.net.*;

class TCPClient {

public static void main(String argv[]) throws Exception

{

String sentence;

String modifiedSentence;

BufferedReader inFromUser =

new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =

new DataOutputStream(clientSocket.getOutputStream());

Create

input stream

Create

client socket,

connect to server

Create

output stream

attached to socket

2: Application Layer 71

Example: Java client (TCP), cont.

BufferedReader inFromServer =

new BufferedReader(new

InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}

}

Create

input stream

attached to socket

Send line

to server

Read line

from server

2: Application Layer 72

Example: Java server (TCP)
import java.io.*;

import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception

{

String clientSentence;

String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =

new BufferedReader(new

InputStreamReader(connectionSocket.getInputStream()));

Create

welcoming socket

at port 6789

Wait, on welcoming

socket for contact

by client

Create input

stream, attached

to socket

2: Application Layer 73

Example: Java server (TCP), cont

DataOutputStream outToClient =

new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);

}

}

}

Read in line

from socket

Create output

stream, attached

to socket

Write out line

to socket

End of while loop,

loop back and wait for

another client connection

2: Application Layer 74

Socket programming with UDP

UDP: no ―connection‖ between
client and server

 no handshaking

 sender explicitly attaches
IP address and port of
destination to each packet

 server must extract IP
address, port of sender
from received packet

UDP: transmitted data may be
received out of order, or
lost

application viewpoint

UDP provides unreliable transfer

of groups of bytes (“datagrams”)

between client and server

2: Application Layer 75

Client/server socket interaction: UDP

Server (running on hostid)

close

clientSocket

read datagram from

clientSocket

create socket,

clientSocket =

DatagramSocket()

Client

Create datagram with server IP and

port=x; send datagram via

clientSocket

create socket,

port= x.

serverSocket =

DatagramSocket()

read datagram from

serverSocket

write reply to

serverSocket

specifying

client address,

port number

2: Application Layer 76

Example: Java client (UDP)

s
e

n
d

P
a

c
k
e

t

to network from network

re
c
e

iv
e

P
a

c
ke

t

in
F

ro
m

U
s
e

r

keyboard monitor

Process

clientSocket

UDP

packet

input

stream

UDP

packet

UDP

socket

Output: sends packet

(recall

that TCP sent “byte

stream”)

Input: receives packet

(recall thatTCP

received “byte

stream”)

Client

process

client UDP

socket

2: Application Layer 77

Example: Java client (UDP)

import java.io.*;

import java.net.*;

class UDPClient {

public static void main(String args[]) throws Exception

{

BufferedReader inFromUser =

new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];

byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create

input stream

Create

client socket

Translate

hostname to IP

address using DNS

2: Application Layer 78

Example: Java client (UDP), cont.

DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =

new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);

clientSocket.close();

}

}

Create datagram with

data-to-send,

length, IP addr, port

Send datagram

to server

Read datagram

from server

2: Application Layer 79

Example: Java server (UDP)

import java.io.*;

import java.net.*;

class UDPServer {

public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];

byte[] sendData = new byte[1024];

while(true)

{

DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create

datagram socket

at port 9876

Create space for

received datagram

Receive

datagram

2: Application Layer 80

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);

}

}

}

Get IP addr

port #, of

sender

Write out

datagram

to socket

End of while loop,

loop back and wait for

another datagram

Create datagram

to send to client

Introduction 1-81

Chapter 2: ROAD MAP

 Transport Layer Introduction

 Port Address

 UDP

 TCP

 Socket Programming using TCP and UDP

 SCTP (Stream control transmission protocol)

 RTP

 TCP in wireless network

 Quality of services

23.82

SCTP
Stream Control Transmission Protocol (SCTP) is a new

reliable, message-oriented transport layer protocol.

SCTP, however, is mostly designed for Internet

applications that have recently been introduced. These

new applications need a more sophisticated service than

TCP can provide.

SCTP Services and Features

Packet Format

An SCTP Association

Flow Control and Error Control

Topics discussed in this section:

23.83

SCTP is a message-oriented, reliable protocol

that combines the best features of

UDP and TCP.

Note

TCP/IP Protocol Suite 84

Comparison

UDP: Message-oriented, Unreliable

TCP: Byte-oriented, Reliable

SCTP
Message-oriented, Reliable

Other innovative features

• Association, Data transfer/Delivery

• Fragmentation,

• Error/Congestion Control

23.85

Some SCTP applications

TCP/IP Protocol Suite
86

Servicesof SCTP

 Process-to-Process Communication

Multiple Streams

Multihoming

 Full-Duplex Communication

 Connection-Oriented Service

 Reliable Service

23.87

Multiple-stream concept

If one of the streams is blocked,

the other streams can still deliver

their data.

23.88

An association in SCTP can involve multiple streams.

Note

23.89

Multihoming concept

At present, SCTP does not allow load sharing between

different path.

Currently, it is only for fault-tolerance.

TCP/IP Protocol Suite
90

SCTP Features
 Transmission Sequence Number (TSN)

 Stream Identifier (SI)

 Stream Sequence Number (SSN)

 Packets

Acknowledgment Number

 Flow Control

 Error Control

 Congestion Control

TCP/IP Protocol Suite
91

In SCTP, a data chunk is numbered using a

TSN.

To distinguish between different streams,

SCTP uses an SI.

To distinguish between different data

chunks belonging to the same stream,

SCTP uses SSNs.

Comparison between UDP,TCP
and SCTP

UDP TCP SCTP

Message oriented
protocol

Byte oriented
protocol

Message oriented
protocol

Preserve message
boundaries

Does not Preserve
message boundaries

Preserve message
boundaries

Unreliable Reliable Reliable

No congestion and
flow control

Have congestion and
flow control

Have congestion and
flow control

Each message follows
different route so no
sequencing

Each message follows
same route so have in
sequence data
delivery

have in sequence data
delivery

Port no 17 Port no 6 Port no 132

1-92

TCP/IP Protocol Suite 93

SCTP vs. TCP (1)

 Control information
TCP: part of the header

SCTP: several types of control chunks

Data
TCP: one entity in a TCP segment

SCTP: several data chunks in a packet

Option
TCP: part of the header

SCTP: handled by defining new chunk types

TCP/IP Protocol Suite 94

SCTP vs. TCP (2)

Mandatory part of the header
TCP: 20 bytes, SCTP: 12 bytes

 Reason:
• TSN in data chunk’s header

• Ack. # and window size are part of control chunk

• No need for header length field (∵no option)

• No need for an urgent pointer

 Checksum
TCP: 16 bits, SCTP: 32 bit

TCP/IP Protocol Suite 95

SCTP vs. TCP (3)

Association identifier
TCP: none, SCTP: verification tag

Multihoming in SCTP

 Sequence number
TCP: one # in the header

SCTP: TSN, SI and SSN define each data
chunk

SYN and FIN need to consume one seq. #

 Control chunks never use a TSN, SI, or
SSN number

TCP/IP Protocol Suite
96

Comparison between a TCP segment and an SCTP packet

TCP has segments; SCTP has packets.

TCP/IP Protocol Suite
97

SCTP PACKET FORMAT

In this section, we show the format of a packet

and different types of chunks.

An SCTP packet has a mandatory general

header and a set of blocks called chunks.

There are two types of chunks:

1. control chunks and

2. data chunks.

TCP/IP Protocol Suite
98

SCTP packet format

TCP/IP Protocol Suite
99

In an SCTP packet, control chunks come

before data chunks.

Note

23.100

General header (Common layout of a chunk)

TCP/IP Protocol Suite
101

In SCTP, control information and data

information are carried in separate chunks.

Data chunks are identified by three

identifiers: TSN, SI, and SSN.

TSN is a cumulative number identifying the

association; SI defines the stream;

SSN defines the chunk in a stream.

In SCTP, acknowledgment numbers are

used to acknowledge only data chunks;

control chunks are acknowledged by other

control chunks if necessary.

TCP/IP Protocol Suite
102

Packet, data chunks, and streams

Introduction 1-103

Chapter 2: ROAD MAP

 Transport Layer Introduction

 Port Address

 UDP

 TCP

 Socket Programming using TCP and UDP

 SCTP

 RTP (Real Time Transport Protocol)

 TCP in wireless network

 Quality of services

RTP: A Transport Protocol for
Real-Time Applications

Introduction

 Internet standard for real-time data
 Interactive audio, video, and simulation data

 Primarily designed for multi-user multimedia
conference
 Session management
 Scalability considerations

 Provides end-to-end transport functions for real-
time applications
 Payload type identification
 Sequence numbering
 Timestamping
 Delivery monitoring

Introduction – cont.

 Containing two closely linked parts: data + control
 RTP: Real-time transport protocol

• Carry real-time data

 RTCP: RTP control protocol

• QoS monitoring and feedback

• Session control

Architecture

Applications

RTP & RTCP

Other transport and
network protocols

UDP

IP

RTP – packet format

V P X CSRC
count

M Payload
type

Sequence number

(16 bits)

Timestamp (32 bits)

Synchronization source (SSRC) id. (32 bits)

Contributing source (CSRC) id. (0~15 items, 32 bit each)

Header extension (optional)

Payload (real time data)

Padding (size
x 8 bits)

Padding size
(8bits)

 Version (V, 2bits): =2

 Padding(P, 1bit): If set, last byte of payload is padding size

 Extension(X, 1bit): If set, variable size header extension exists

Fixed

header

optional

header

optional

RTP - header
 CSRC count (4 bits): number of Contributors, max 16 can

be possible

 Marker (1 bit): defined in profile, mark end of data

 Payload type (7 bits): Audio/Video encoding scheme

 Sequence number: random initial value, increase by one
for each RTP packet; for loss detection and seq.
restoration

 SSRC: identify source; chosen randomly and locally;
collision needs to be resolved

 CSRC list: id. of contributing sources, inserted by mixer

Introduction 1-109

Chapter 2: ROAD MAP

 Transport Layer Introduction

 Port Address

 UDP

 TCP

 Socket Programming using TCP and UDP

 SCTP

 RTP

 TCP in wireless network

Quality of Services (QoS)

TCP over Wireless : outline

 TCP over Wireless: Problems
 TCP over Wireless: Solutions/Schemes

 Split TCP
1.Indirect TCP
2.Selective repeat protocol
3.Mobile TCP

 TCP-aware link layer
1.Snoop
2.WTCP

 Link layer protocol
 End-to-end protocol

1.Selective Acknowledgement
2.Explicit Loss Notification

TCP over Wireless: Problems

 TCP has been optimized for wired networks.

Any packet loss is considered to be the
result of network congestion and the
congestion window size is reduced
drastically as a precaution.

 Sources of errors in wireless links:
1. Due to hands off between cells

2. Packet losses due to futile transmissions

3. Packet losses due to transmission errors in
wireless links

TCP over Wireless : outline

 TCP over Wireless: Problems

 TCP over Wireless: Solutions (Schemes)
 Split TCP

1.Indirect TCP

2.Selective repeat protocol

3.Mobile TCP

 TCP-aware link layer
1.Snoop

2.WTCP

 Link layer protocol

 End-to-end protocol
1.Selective Acknowledgement

2.Explicit Loss Notification

Split TCP: Indirect TCP
 I-TCP splits end-to-end TCP connection into two

connections
 Fixed host to BS
 BS to mobile host

 Two TCP connections with independent flow/congestion
control contexts

 Packets buffered at BS

Internet

FH BS MH

TCP TCP
Buffer

Split TCP: Indirect TCP

 Pros
 Separates flow and congestion control of wireless and

wired
--higher throughput at sender

 Cons
 Breaks TCP end-to-end semantics

• Ack at FH does not mean MH has received the packet

 BS failure causes loss of data
• Neither FH nor MH can recover the data

 On path change, data has to be forwarded to new BS

 Wireless part is the bottleneck

Split TCP: Selective Repeat Protocol
 Similar to I-TCP but uses SRP/UDP (Selective Repeat

Protocol over UDP) over wireless link, Improving End-to-
End Performance of TCP over Mobile Internetworks

 Pros
 Better performance over wireless links

 Cons
 All cons of I-TCP except last one

Internet

FH BS MH

TCP SRP/UDP
Buffer

Split-TCP: Mobile TCP

 Similar to I-TCP but tries to keep TCP end-to-
end semantics

 No buffering , no retransmission at base
station BS.

 BS only monitors all packets and only acks the
last packet after it is received by MH

 Pros
 Data will be recovered eventually after BS failure
 BS buffer does not overflow

 Cons
 Worse performance
 Still not exactly the TCP semantics

TCP over Wireless : outline

 TCP over Wireless: Problems

 TCP over Wireless: Solutions (Schemes)
 Split TCP

1.Indirect TCP

2.Selective repeat protocol

3.Mobile TCP

 TCP-aware link layer
1.Snoop

2.WTCP

 Link layer protocol

 End-to-end protocol
1.Selective Acknowledgement

2.Explicit Loss Notification

TCP-aware Link Layers: Snoop
 Link layer is aware of TCP traffic

 BS caches data and monitors acks. Retransmits
on duplicate acks and drops duplicate acks

Internet

FH BS MH

Packet 1

Ack 1Packet 2

Ack 2

Packet 3

Packet 4
Ack 2

Packet 1

Ack 1

Packet 2

Ack 2Packet 3

Packet 4

Packet 3

Blocks Dup-Ack

TCP-aware Link Layers: Snoop

 Pros
 No modification to FH and MH

 BS only keeps soft state—BS failure does not
break TCP

 Cons
 Does not work with encrypted packets

 Does not work if data packets and acks
traverse different paths

 Increases RTT—high timeout

Introduction 1-121

Chapter 2: ROAD MAP

 Transport Layer Introduction

 Port Address

 UDP

 TCP

 Socket Programming using TCP and UDP

 SCTP

 RTP (Real Time Transport Protocol)

 TCP in wireless network

 Quality of services (QoS)

Quality of Service

• Requirements

• Techniques for Achieving Good Quality of
Service

• Integrated Services

• Differentiated Services

Requirements

Introduction 1-123

1. Reliability

2. Jitter

3. Delay

4. Bandwidth

Requirements

Reliability- Reliability is concerned with the ability of a network
to carry out a desired operation according to its specifications

Jitter- Jitter is defined as a variation in the delay of received
packets.

Delay- is the amount of time required to transmit packets.

Bandwidth- amount of information that can be transmitted over a
network in a given amount of time

Introduction 1-124

Requirements

How stringent the quality-of-service
requirements are.

5-30

Techniques to achieve Good
QoS

 Buffering

 Traffic Shaping

 Leaky bucket algorithm

 Token bucket algorithm

 Resource reservation

Admission control

 Packet scheduling

Introduction 1-126

Buffering

Smoothing the output stream by buffering
packets.

The Leaky Bucket Algorithm

(a) A leaky bucket with water. (b) a leaky bucket
with packets.

The Leaky
Bucket
Algorithm

(a) Input to a leaky bucket.

(b) Output from a leaky

bucket. Output from a token

bucket with capacities of (c)

250 KB, (d) 500 KB, (e)

750 KB, (f) Output from a

500KB token bucket feeding

a 10-MB/sec leaky bucket.

The Token Bucket Algorithm

(a) Before. (b) After.

5-34

Admission Control

An example of flow specification.

5-34

Packet Scheduling

(a) A router with five packets queued for
line O.

(b) Finishing times for the five packets.

Integrated Services

 Flow based QoS model

Which means used need to create a flow, a

kind of virtual circuit from source to

destination and inform all routers about

the resource requirement

 This kind of reservation of resources is

done by a protocol called RSVP(Resource

Reservation Protocol)

Introduction 1-133

Integrated Services

 Resource reservation means reserve how
much buffer, bandwidth etc is needed.

When a router receives flow specification
from an application, it decides to admit or
deny the service

 Two classes of service is defined for
Integrated serviced

1. Guaranteed Service Class(For real time
application)

2. Controlled-load Service(For application
require reliablility)

Introduction 1-134

RSVP-The Resource ReSerVation Protocol

 The Resource Reservation Protocol (RSVP) is a
Transport layer protocol designed to reserve
resources across a network for an Integrated
service network.

 RSVP operates over an IPV4 or IPV6 and provides
resource reservations for multicast or unicast
data flows

 RSVP can be used by either host or routersto
request or deliver specific levels of quality of
service (QoS) for application data streams or
flows.

 RSVP defines how applications place reservations
and how they can give up the reserved resources
once the need for them has ended.

Introduction 1-135

RSVP-The Resource ReSerVation
Protocol

(a) A network, (b) The multicast spanning tree for host 1.

(c) The multicast spanning tree for host 2.

RSVP-The ReSerVation
Protocol (2)

(a) Host 3 requests a channel to host 1. (b) Host 3 then requests a

second channel, to host 2. (c) Host 5 requests a channel to host 1.

Problems with Integrated Services

Scalability: Each router keep
information for each flow. So does
not possible to scale more

Service Type Limitation: Only
two types of services are provided
guaranteed and control based

Introduction 1-138

Differentiated Services

Handles shortcomings of Integrated
Services .

 In differentiated model router does not
store information about flows.

No advance reservation is required

 It is a Class based service model

 Each packet contains a field called DS field

 It has two types of models

1. Expedited forwarding

2. Assured Forwarding
Introduction 1-139

Expedited Forwarding

 In this model two classes of service is
available: 1>Regular 2> Expedited

 Expedited packets experience a traffic-
free network.

Assured Forwarding

 There are 4 priority classes , each having 3
discard policies like low,medium and high.

 Traffic controller have Classifier,Marker and
Shaper/Dropper

 Packet is classified according to priority, then
marked according to their class .

 Shaper/dropper filter these packet that may drop
or delay the packet.

Thank You .

Introduction 1-142

