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SYLLABUS: Framing: fixed size framing, variable size framing, , Flow control, Error control ,Error detections Error correction: 

block coding, linear block codes, cyclic codes: cyclic redundancy check, , Checksum: idea, one‟s complement internet check sum, 

services provided to Network Layer, elementary Data link Layer protocols- Unrestricted Simplex protocol, Simplex Stop-and-Wait 

Protocol, Simplex protocol for Noisy Channel. 

Sliding window protocol: One bit, Go back N, Selective repeat-Stop and wait protocol,  Data link layer in HDLC: configuration and 

transfer modes, frames, control field, point to point protocol (PPP): framing transition phase, multiplexing, multi link PPP. 

INTRODUCTION: 

 The data link layer needs to pack bits into frames, so that each frame is distinguishable from another.  

 Our postal system practices a type of framing. The simple act of inserting a letter into an envelope 

separates one piece of information from another; the envelope serves as the delimiter. 

 Framing in the data link layer separates a message from one source to a destination, or from other 

messages to other destinations, by adding a sender address and a destination address.  

 The destination address defines where the packet is to go; the sender address helps the recipient 

acknowledge the receipt. 

Fixed-Size Framing: 

Frames can be of fixed or variable size. In fixed-size framing, there is no need for defining the boundaries of the 

frames; the size itself can be used as a delimiter. An example of this type of framing is the ATM wide-area 

network, which uses frames of fixed size called cells. 

Variable-Size Framing: 

In variable-size framing, we need a way to define the end of the frame and the beginning of the next. 

Historically, two approaches were used for this purpose: a character-oriented approach and a bit-oriented 

approach. 

Character-Oriented Protocols: 

 In a character-oriented protocol, data to be carried are 8-bit characters from a coding system such as 

ASCII. 

 The header, which normally carries the source and destination addresses and other control information 

 The trailer, which carries error detection or error correction redundant bits, are also multiples of 8 bits.  

 To separate one frame from the next, an 8-bit (1-byte) flag is added at the beginning and the end of a 

frame. The flag, composed of protocol-dependent special characters, signals the start or end of a frame. 

Figure shows the format of a frame in a character-oriented protocol. 

 
Figure:  A frame in a character-oriented protocol 

 Character-oriented framing was popular when only text was exchanged by the data link layers.  

 The flag could be selected to be any character not used for text communication. 

 Now, however, we send other types of information such as graphs, audio, and video. Any pattern used 

for the flag could also be part of the information. If this happens, the receiver, when it encounters this 

pattern in the middle of the data, thinks it has reached the end of the frame. To fix this problem, a byte-

stuffing strategy was added to character-oriented framing. 

Byte stuffing (or character stuffing): 

 In this sender's data link layer insert a special escape byte (ESC) just before each ''accidental'' flag 

byte in the data.  

 The data link layer on the receiving end removes the escape byte before the data are given to the 

network layer. 

 This technique is called byte stuffing or character stuffing.  

 Thus, a framing flag byte can be distinguished from one in the data by the absence or presence of an 

escape byte before it.  

 Of course, the next question is: What happens if an escape byte occurs in the middle of the data?  

 The answer is that it, too, is stuffed with an escape byte. 

  Thus, any single escape byte is part of an escape sequence, whereas a doubled one indicates that a 

single escape occurred naturally in the data.  

Unit –II
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Major disadvantage of Character-oriented protocols is it use 8-bit characters. The universal coding systems in 

use today, such as Unicode, have 16-bit and 32-bit characters that conflict with 8-bit characters. 

Bit-Oriented Protocols: 

 In this data frames contains an arbitrary number of bits and allows character codes with an arbitrary 

number of bits per character.  

 It works like this. Each frame begins and ends with a special bit pattern, 01111110 (in fact, a flag byte).  

 Whenever the sender's data link layer encounters five consecutive 1s in the data, it automatically stuffs a 

0 bit into the outgoing bit stream. 

 This bit stuffing is analogous to byte stuffing, in which an escape byte is stuffed into the outgoing 

character stream before a flag byte in the data. 

 When the receiver sees five consecutive incoming 1 bits, followed by a 0 bit, it automatically destuffs 

(i.e., deletes) the 0 bit.  

 Just as byte stuffing is completely transparent to the network layer in both computers, so is bit stuffing.  

 If the user data contain the flag pattern, 01111110, this flag is transmitted as 011111010 but stored 

in the receiver's memory as 01111110. 

 
Fig: bit stuffing and unstuffing 

FLOW AND ERROR CONTROL: 

Data communication requires at least two devices working together, one to send and the other to receive. Even 

such a basic arrangement requires a great deal of coordination for an intelligible exchange to occur. The most 

important responsibilities of the data link layer are flow control and error control. Collectively, these 

functions are known as data link control. 

Flow Control: 

 Flow control coordinates the amount of data that can be sent before receiving an acknowledgment and is 

one of the most important duties of the data link layer.  

 In most protocols, flow control is a set of procedures that tells the sender how much data it can transmit 

before it must wait for an acknowledgment from the receiver.  

 The flow of data must not be allowed to overwhelm the receiver.  

 Any receiving device has a limited speed at which it can process incoming data and a limited amount of 

memory in which to store incoming data.  

 The receiving device must be able to inform the sending device before those limits are reached and to 

request that the transmitting device send fewer frames or stop temporarily.  

 Incoming data must be checked and processed before they can be used.  

 The rate of such processing is often slower than the rate of transmission.  

 For this reason, each receiving device has a block of memory, called a buffer, reserved for storing 

incoming data until they are processed. 

  If the buffer begins to fill up, the receiver must be able to tell the sender to halt transmission until it is 

once again able to receive. 

Error Control: 

 Error control is both error detection and error correction.  

 It allows the receiver to inform the sender of any frames lost or damaged in transmission and 

coordinates the retransmission of those frames by the sender.  
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 In the data link layer, the term error control refers primarily to methods of error detection and 

retransmission.  

 Error control in the data link layer is often implemented simply: Any time an error is detected in an 

exchange, specified frames are retransmitted. This process is called automatic repeat request (ARQ). 

ERROR DETECTIONS ERROR CORRECTION: 

 Data can be corrupted during transmission. Some applications require that errors be detected and 

corrected. 

Types of Errors: 
Single-Bit Error: 

The term single-bit error means that only 1 bit of a given data unit is changed from 1 to 0 or from 0 to 1. 

 
Figure:  Single-bit error 

Burst Error 

The term burst error means that 2 or more bits in the data unit have changed from 1 to 0 or from 0 to 1. 

 
Figure:  Burst error of length 8 

 

Redundancy: 

 The central concept in detecting or correcting errors is redundancy.  

 To be able to detect or correct errors, we need to send some extra bits with our data.  

 These redundant bits are added by the sender and removed by the receiver. Their presence allows the 

receiver to detect or correct corrupted bits. 

Detection Versus Correction: 

 The correction of errors is more difficult than detection.  

 In error detection, we are looking only to see if any error has occurred. The answer is a simple yes or no. 

 In error correction, we need to know the exact number of bits that are corrupted and more importantly, 

their location in the message. The number of errors and the size of message are important. 

Forward Error Correction Versus Retransmission: 

There are two main methods of error correction.  

 Forward error correction is the process in which the receiver tries to guess the message by using 

redundant bits. This is possible if the number of errors is small.  

 Correction by retransmission is a technique in which the receiver detects the occurrence of an error 

and asks the sender to resend the message. Resending is repeated until a message arrives that the 

receiver believes to be error-free. 

Coding: 

Redundancy is achieved through various coding schemes. The sender adds redundant bits through a process that 

creates a relationship between the redundant bits and the actual data bits. The receiver checks the relationships 

the two sets of bits to detect or correct the errors. The ratio of redundant bits to the data bits and the robustness 

of the process are important factors in any coding scheme. Following figure shows the general idea. 

 

Coding schemes can be divided into two broad categories: Block Coding and Convolution Coding. 
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Block Coding: 

 In block coding, we divide our message into blocks, each of k bits, called datawords. 

  We add r redundant bits to each block to make the total length to n = k + r. The resulting n-bit blocks 

are called codewords.  

 With k bits, we can create a combination of 2
k
 datawords; with n bits, we can create a combination of 2

n
 

codewords.  

 The block coding process is a one-to-one; the same dataword is always encoded as the same codeword. 

This means that we have 2
n
 - 2

k
 codewords that are not used. We call this codewords invalid or illegal. 

Following figure shows the situation. 

 
Figure:: datawords and codewords in block coding 

Error Detection 

If the following two conditions are met, the receiver can detect a change in the original codeword. 

1. The receiver can find a list of valid codewords. 

2. The original codeword has changed to an invalid one 

 

 
Figure:  Process of error detection in block coding 

The sender creates codewords out of datawords by using a generator that applies the rules and procedures of 

encoding. Each codeword sent to the receiver may change during transmission. If the received codeword is the 

same as one of the valid codewords, the word is accepted; the corresponding dataword is extracted for use. If 

the received codeword is not valid, it is  discarded. However, if the codeword is corrupted during transmission 

but the received word still matches a valid codeword, the error remains undetected. 

Error Correction 

In error correction, the receiver needs to find (or guess) the original codeword sent. We can say that we need 

more redundant bits for error correction than for error detection. 

 

 
Figure 10.7  Structure of encoder and decoder in error correction 

Hamming Distance: 

 One of the central concepts in coding for error control is the idea of the Hamming distance.  

 The Hamming distance between two words (of the same size) is the number of differences between the 

corresponding bits.  

 We show the Hamming distance between two words x and y as d(x, y). 

 The Hamming distance can easily be found if we apply the XOR ( )operation  on the two words and 

count the number of 1s in the result. 

 Note that the Hamming distance is a value greater than zero. 

Example 

Let us find the Hamming distance between two pairs of words. 
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1. The Hamming distance d(000, 011) is 2 because 000  011 is 011 (two 1s). 

2. The Hamming distance d(10101, 11110) is 3 because 10101  11110 is 01011 (three 1s) 

Minimum Hamming Distance: 

 Although the concept of the Hamming distance is the central point in dealing with error detection and 

correction codes, the measurement that is used for designing a code is the minimum Hamming 

distance.  

 In a set of words, the minimum Hamming distance is the smallest Hamming distance between all 

possible pairs.  

 We use dmin to define the minimum Hamming distance in a coding scheme.  

 To find this value, we find the Hamming distances between all words and select the smallest one. 

Example : 

Find the minimum Hamming distance of the coding scheme in Table. 

 
Table 1.1 

Solution 

We first find all Hamming distances. 

d(000, 011) =2 d(000,101)=2   d(000,110)=2  d(011,101)=2  d(011,110)=2 d(101,110)=2 

The dmin in this case is 2. 

Example 

Find the minimum Hamming distance of the coding scheme in Table  

 
Table 1.2 

Solution 

We first find all the Hamming distances. 

d(00000,01011)=3    d(00000,10101)=3    d(00000,11110)=4 

d(01011,10101)=4    d(01011,11110)=3   d(10101,1110)=3 

The dmin in this case is 3. 

Three Parameters: 

To mention any coding scheme we needs to have at least three parameters: the codeword size n, the dataword 

size k, and the minimum Hamming distance dmin. A coding scheme C is written as C(n, k) with a separate 

expression for dmin. For example, we can call our first coding scheme C(3, 2) with dmin =2 and our second 

coding scheme C(5, 2) with dmin = 3. 

Hamming Distance and Error 

The relationship between the Hamming distance and errors occurring during transmission.  

 When a codeword is corrupted during transmission, the Hamming distance between the sent and received 

codewords is the number of bits affected by the error.  

 In other words, the Hamming distance between the received codeword and the sent codeword is the number 

of bits that are corrupted during transmission.  

 

For example, if the codeword 00000 is sent and 01101 is received, 3 bits are in error and the Hamming 

distance between the two is d(00000, 01101)=3. 

Minimum distance for Error Detection: 

To guarantee the detection of up to s errors in all cases, the minimum Hamming distance in a block code must be 

dmin = S + 1 

Example  

The minimum Hamming distance for our first code scheme (Table 1.1) is 2. This code guarantees 
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detection of only a single error. For example, if the third codeword (101) is sent and one error occurs, the received 

codeword does not match any valid codeword. If two errors occur, however, the received codeword may match a valid 

codeword and the errors are not detected. 

Minimum Distance for Error Correction 

To guarantee correction of up to t errors in all cases, the minimum Hamming distance in a block code must be 

dmin = 2t + 1. 

Example  

A code scheme has a Hamming distance dmin = 4. What is the error detection and correction capability of this 

scheme? 

Solution 

This code guarantees the detection of up to three errors (s = 3), but it can correct up to one error.In other words, 

if this code is used for error correction, part of its capability is wasted. Error correction codes need to have an 

odd minimum distance (3, 5, 7, . . . ). 

LINEAR BLOCK CODES: 

 Almost all block codes used today belong to a subset called linear block codes. 

 A linear block code is a code in which the exclusive OR (addition modulo-2) of two valid codewords 

creates another valid codeword. 

Minimum Distance for Linear Block Codes: 

 It is simple to find the minimum Hamming distance for a linear block code.  

 The minimum Hamming distance is the number of 1s in the nonzero valid codeword with the smallest 

number of 1s. 

Example  

In our first code (Table 1), the numbers of 1s in the nonzero codewords are 2, 2, and 2. So the minimum Hamming distance is 

dmin =2. In our second code (Table 2), the numbers of 1s in the nonzero codewords are 3, 3, and 4. So in this code we have 

dmin =3. 

Simple Parity- Check Code: 

 In this code, a k-bit dataword is changed to an n-bit codeword where n = k + 1. The extra bit, called the 

parity bit, is selected to make the total number of 1s in the codeword even.  

 The minimum Hamming distance for this category is dmin =2, which means that the code is a single-bit 

error-detecting code; it cannot correct any error.  
Following table shows parity code with k=4 and n=5 

Following Figure shows a possible structure of an encoder (at the sender) and a decoder (at the receiver). 

 
Figure:  Encoder and decoder for simple parity-check code 

The encoder uses a generator that takes a copy of a 4-bit dataword (a0,a1,a2, and a3) and generates a parity bit r0. 

The dataword bits and the parity bit create the 5-bit codeword. The parity bit that is added makes the number of 

1s in the codeword even. 
This is normally done by adding the 4 bits of the dataword (modulo-2); the result is the parity bit. In other words, 

            r0=a3+a2+a1+a0  (modulo-2) 
 

If the number of 1s is even, the result is 0; if the number of 1s is odd, the result is 1. 

In both cases, the total number of 1s in the codeword is even. 
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The sender sends the codeword which may be corrupted during transmission. The receiver receives a 5-bit 

word. The checker at the receiver does the same thing as the generator in the sender with one exception: The 

addition is done over all 5 bits. The result, which is called the syndrome, is just 1 bit. The syndrome is 0 when 

the number of 1s in the received codeword is even; otherwise, it is 1. 

  s0=b3+b2+b1+b0+q0  (modulo-2) 
The syndrome is passed to the decision logic analyzer. If the syndrome is 0, there is no error in the received 

codeword; the data portion of the received codeword is accepted as the dataword; if the syndrome is 1, the 

data portion of the received codeword is discarded. The dataword is not created. 

Example  

Let us look at some transmission scenarios. Assume the sender sends the dataword 1011. The codeword created 

from this dataword is 10111, which is sent to the receiver. We examine five cases: 

1. No error occurs; the received codeword is 10111. The syndrome is 0. The dataword 1011 is created. 

2. One single-bit error changes a1. The received codeword is 10011. The syndrome is 1. No dataword is 

created. 

3. One single-bit error changes r0.The received codeword is 10110. The syndrome is 1. No dataword is 

created. Note that although none of the dataword bits are corrupted, no dataword is created because the 

code is not sophisticated enough to show the position of the corrupted bit. 

4. An error changes ro and a second error changes a3. The received codeword is 00110. The syndrome is 

0. The dataword 0011 is created at the receiver. Note that here the dataword is wrongly created due to 

the syndrome value. The simple parity-check decoder cannot detect an even number of errors. The errors 

cancel each other out and give the syndrome a value of 0. 

5. Three bits- a3, a2, and a1-are changed by errors. The received codeword is 01011. The syndrome is 1. 

The dataword is not created. This shows that the simple parity check, guaranteed to detect one single 

error, can also find any odd number of errors. 

Two-dimensional parity check: 

A better approach is the two-dimensional parity check. In this method, the dataword is organized in a table 

(rows and columns). Following  Figure, the data to be sent, five 7-bit bytes, are put in separate rows. For each 

row and each column, 1 parity-check bit is calculated. The whole table is then sent to the receiver, which finds 

the syndrome for each row and each column. As Following Figure shows, the two-dimensional parity check can 

detect up to three errors that occur anywhere in the table (arrows point to the locations of the created nonzero 

syndromes). However, errors affecting 4 bits may not be detected. 

 

 

 
Figure: two-dimensional parity-check code 
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Hamming Codes 

Now let us discuss a category of error-correcting codes called Hamming codes. These codes were originally 

designed with dmin = 3, which means that they can detect up to two errors or correct one single error. Although 

there are some Hamming codes that can correct more than one error, our discussion focuses on the single-bit 

error-correcting code. First let us find the relationship between n and k in a Hamming code. We need to choose 

an integer m >= 3. The values of nand k are then calculated from mas n = 2m – 1 and k = n - m. The number of 

check bits r =m. 

For example, ifm =3, then n ::: 7 and k::: 4. This is a Hamming code C(7, 4) with dmin =3. 

Figure  shows the structure of the encoder and decoder for this example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The structure ofthe encoder and decoder for a Hamming code 

A copy of a 4-bit dataword is fed into the generator that creates three parity checks ro, r1 and r2 as shown 

below: 

                                              r0=a2+a1+a0     

                                              r1=a3+a2+a1     

                                              r2=a1+a0+a3     

 

In other words, each of the parity-check bits handles 3 out of the 4 bits of the dataword. The total number of 1s 

in each 4-bit combination (3 dataword bits and 1 parity bit) must be even. We are not saying that these three 

equations are unique; any three equations that involve 3 of the 4 bits in the dataword and create independent 

equations (a combination of two cannot create the third) are valid. 

The checker in the decoder creates a 3-bit syndrome (s2s1s0) in which each bit is the parity check for 4 out of 

the 7 bits in the received codeword: 

    S0=b2+b1+b0+q0 

S1=b3+b2+b1+q1 

S3=b1+b0+b3+q2 

 

The equations used by the checker are the same as those used by the generator with the parity-check bits added 

to the right-hand side of the equation. The 3-bit syndrome creates eight different bit patterns (000 to 111) that 

can represent eight different conditions. 

These conditions define a lack of error or an error in 1 of the 7 bits of the received codeword, as shown in Table  

Syndrome  000  001  010  011  100  101  110  111 

Error   None  q0  ql  b2  q2  bo  b3  bl 

Note that the generator is not concerned with the four cases shaded in Table because there is either no error or 

an error in the parity bit. In the other four cases, 1 of the bits must be flipped (changed from 0 to 1 or 1 to 0) to 

find the correct dataword. 

The syndrome values in Table  are based on the syndrome bit calculations. For example, if qo is in error, So is 

the only bit affected; the syndrome, therefore, is 001. If b2 is in error, So and s1 are the bits affected; the 

syndrome, therefore is OIl. Similarly, if bI is in error, all 3 syndrome bits are affected and the syndrome is 111. 

Performance 

A Hamming code can only correct a single error or detect a double error. However, there is a way to make it 

detect a burst error, as shown in Figure. The key is to split a burst error between several codewords, one error 

for each codeword. In data communications, we normally send a packet or a frame of data. To make the 
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Hamming code respond to a burst error of size N, we need to make N codewords out of our frame. Then, 

instead of sending one codeword at a time, we arrange the codewords in a table and send the bits in the table a 

column at a time. In Figure 10.13, the bits are sent column by column (from the left). In each column, the bits 

are sent from the bottom to the top. In this way, a frame is made out of the four codewords and sent to the 

receiver.  

 

 

             

        Burst error 

 
Shows  that when a burst error of size 4 corrupts the frame, only 1 bit from each codeword is corrupted. The 

corrupted bit in each codeword can then easily be corrected at the receiver. 

Cyclic Redundancy Check 

We can create cyclic codes to correct errors. Cyclic Redundancy Check (CRC) that is used in networks such as 

LANs and WANs. Figure shows CRC encoder and decoder 

 

 

 

 
 

 

In the encoder, the dataword has k bits (4 here); the codeword has n bits (7 here). The size of the dataword is 

augmented by adding n - k (3 here) Os to the right-hand side of the word. The n-bit result is fed into the 

generator. The generator uses a divisor of size n - k + I (4 here), predefined and agreed upon. The generator 

divides the augmented dataword by the divisor (modulo-2 division). The quotient ofthe division is discarded; 

the remainder (r2rl ro) is appended to the dataword to create the codeword. 
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The decoder receives the possibly corrupted codeword. A copy of all n bits is fed to the checker which is a 

replica of the generator. The remainder produced by the checker is a syndrome of n - k (3 here) bits, which is 

fed to the decision logic analyzer. The analyzer has a simple function. If the syndrome bits are all as, the 4 

leftmost bits of the codeword are accepted as the dataword (interpreted as no error); otherwise, the 4 bits 

are discarded (error). 

Encoder 

Let us take a closer look at the encoder. The encoder takes the dataword and augments it with n - k number of 

as. It then divides the augmented dataword by the divisor, as shown in Figure . 

Figure Division in CRC encoder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The process of modulo-2 binary division is the same as the familiar division process we use for decimal 

numbers. However, as mentioned at the beginning of the chapter, in this case addition and subtraction are the 

same. We use the XOR operation to do both. 

 The result of the XOR operation (remainder) is 3 bits (in this case), which is used for the next step after 1 extra 

bit is pulled down to make it 4 bits long. There is one important point we need to remember in this type of 

division. If the leftmost bit of the dividend (or the part used in each step) is 0, the step cannot use the regular 

divisor; we need to use an all-Os divisor. When there are no bits left to pull down, we have a result. The 3-bit 

remainder forms the check bits (r2' rl' and ro). They are appended to the dataword to create the codeword. 

Decoder 

The codeword can change during transmission. The decoder does the same division process as the encoder. The 

remainder of the division is the syndrome. If the syndrome is all Os, there is no error; the dataword is separated 

from the received codeword and accepted. Otherwise, everything is discarded. Figure 10.16 shows two cases: 

The left hand figure shows the value of syndrome when no error has occurred; the syndrome is 000. The right-

hand part of the figure shows the case in which there is one single error.The syndrome is not all Os (it is OIl). 

Figure Division in the CRC decoder for two cases 
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CHECKSUM 

The last error detection method we discuss here is called the checksum. The checksum is used in the Internet by 

several protocols although not at the data link layer.  

Idea 

The concept of the checksum is not difficult. Let us illustrate it with a few examples. 

Example  

Suppose our data is a list of five 4-bit numbers that we want to send to a destination. In addition to sending 

these numbers, we send the sum of the numbers. For example, if the set of numbers is (7, 11, 12, 0, 6), we send 

(7, 11, 12,0,6,36), where 36 is the sum of the original numbers. The receiver adds the five numbers and 

compares the result with the sum. If the two are the same, the receiver assumes no error, accepts the five 

numbers, and discards the sum. Otherwise, there is an error somewhere and the data are not accepted. 

Example  

We can make the job of the receiver easier if we send the negative (complement) of the sum, called the 

checksum. In this case, we send (7, 11, 12,0,6, -36). The receiver can add all the numbers received (including 

the checksum). If the result is 0, it assumes no error; otherwise, there is an error. 

One's Complement 

The previous example has one major drawback. All of our data can be written as a 4-bit word (they are less than 

15) except for the checksum. One solution is to use one's complement arithmetic. In this arithmetic, we can 

represent unsigned numbers between 0 and 2n - 1 using only n bits. t If the number has more than n bits, the 

extra leftmost bits need to be added to the n rightmost bits (wrapping). In one's complement arithmetic, a  

negative number can be represented by inverting all bits (changing a 0 to a 1 and a 1 to a 0). This is the same as 

subtracting the number from 2n - 1. 

Example  

How can we represent the number 21 in one's complement arithmetic using only four bits? 

t Although one's complement can represent both positive and negative numbers, we are concerned only with 

unsigned representation here. 

Solution 

The number 21 in binary is 10101 (it needs five bits). We can wrap the leftmost bit and add it to 

the four rightmost bits. We have (0101 + 1) = 0110 or 6. 

Example  

Let us redo Exercise 10.19 using one's complement arithmetic. The sender initializes the checksum to 0 and 

adds all data items and the checksum (the checksum is considered as one data item and is shown in color). The 

result is 36. However, 36 cannot be expressed in 4 bits. The extra two bits are wrapped and added with the sum 

to create the wrapped sum value 6. In the figure, we have shown the details in binary. The sum is then 

omplemented, resulting in the checksum value 9 (15 - 6 = 9). The sender now sends six data items to the 

receiver including the checksum 9. The receiver follows the same procedure as the sender. It adds all data items 

(including the checksum); the result is 45. The sum is wrapped and becomes 15. The wrapped sum is 

complemented and becomes O. Since the value of the checksum is 0, this means that the data is not corrupted. 

The receiver drops the checksum and keeps the other data items. If the checksum is not zero, the entire packet is 

dropped. 

Internet Checksum 

Traditionally, the Internet has been using a 16-bit checksum. The sender calculates the checksum by following 

these steps. 

Sender site: 

1. The message is divided into 16-bit words. 

2. The value of the checksum word is set to O. 

3. All words including the checksum are added ushtg one's complement addition. 

4. The sum is complemented and becomes the checksum. 

5. The checksum is sent with the data. 

The receiver uses the following steps for error detection. 

Receiver site: 

1. The message (including checksum) is divided into 16-bit words. 

2. All words are added using one's complement addition. 

3. The sum is complemented and becomes the new checksum. 

4. If the value of checksum is 0, the message is accepted; otherwise, it is rejected. 

Example Let us calculate the checksum for a text of 8 characters ("Forouzan"). The text needs to be divided 
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into 2-byte (l6-bit) words. We use ASCII (see Appendix A) to change each byte to a 2-digit hexadecimal 

number. For example, F is represented as Ox46 and 0 is represented as Ox6F. Figure shows how the checksum 

is calculated at the sender and receiver sites. In part a of the figure, the value of partial sum for the first column 

is Ox36. We keep the rightmost digit (6) and insert the Figure  

 

I 0 1 3 Carries 

4 6 6 F (Fo) 

7 2 6 F (ro) 

7 5 7 A luz) 

6 1 6 E (an) 

0 0 0 0 Checksum (initial) 

8 F C 6 Sum (partial) 

          1 

8 F C 7 Sum 

7 0 3 8 Checksum (to send) 

a. Checksum at the sender site  

 

1 () 1 3 Carries 

4 6 6 F IFo) 

7 2 6 F (ro) 

7 5 7 A (uz) 

6 1 6 E (an) 

7 0 3 8 Checksum (received) 

F F F E Sum (partial) 

          1 

F F F F Sum 

0 0 0 () Checksum (new} 

b. Checksum at the receiver site 

 

Performance 

However, it is not as strong as the CRC in error-checking capability. For example, if the value of one word is 

incremented and the value of another word is decremented by the same amount, the two errors cannot be 

detected because the sum and checksum remain the same.  

SERVICES PROVIDED TO NETWORK LAYER: 
The function of the data link layer is to provide services to the network layer. The principal service is 

transferring data from the network layer on the source machine to the network layer on the destination machine. 

On the source machine is an entity, call it a process, in the network layer that hands some bits to the data link 

layer for transmission to the destination. The job of the data link layer is to transmit the bits to the destination 

machine so they can be handed over to the network layer there, as shown in Fig. (a). The actual transmission 

follows the path of Fig. (b), but it is easier to think in terms of two data link layer processes communicating 

using a data link protocol. 

 

The data link layer can be designed to offer various services. The actual services offered can vary from system 

to system. Three reasonable possibilities that are commonly provided are 

1. Unacknowledged connectionless service. 

2. Acknowledged connectionless service. 

3. Acknowledged connection-oriented service. 

Unacknowledged connectionless service: 

 It consists of having the source machine send independent frames to the destination machine without 

having the destination machine acknowledge them.  

 No logical connection is established beforehand or released afterward.  

 If a frame is lost due to noise on the line, no attempt is made to detect the loss or recover from it in the 

data link layer.  

mk:@MSITStore:E:/computer%20networks/Computer%20Networks%204th%20Ed%20-%20Andrew%20S.%20Tanenbaum.chm::/0130661023_ch03lev1sec1.html#ch03fig02
mk:@MSITStore:E:/computer%20networks/Computer%20Networks%204th%20Ed%20-%20Andrew%20S.%20Tanenbaum.chm::/0130661023_ch03lev1sec1.html#ch03fig02
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 This class of service is appropriate when the error rate is very low so that recovery is left to higher 

layers.  

 It is also appropriate for real-time traffic, such as voice, in which late data are worse than bad data.  

 Most LANs use unacknowledged connectionless service in the data link layer. 

Acknowledged Connectionless Service: 

 When this service is offered, there are still no logical connections used, but each frame sent is 

individually acknowledged.  

 In this way, the sender knows whether a frame has arrived correctly.  

 If it has not arrived within a specified time interval, it can be sent again.  

 This service is useful over unreliable channels, such as wireless systems. 

Connection-Oriented Service: 

 The most sophisticated service the data link layer can provide to the network layer is connection-

oriented service. 

 With this service, the source and destination machines establish a connection before any data are 

transferred.  

 Each frame sent over the connection is numbered, and the data link layer guarantees that each frame sent 

is indeed received.  

 Furthermore, it guarantees that each frame is received exactly once and that all frames are received in 

the right order.  

 With connectionless service, in contrast, it is conceivable that a lost acknowledgement causes a packet 

to be sent several times and thus received several times.  

 Connection-oriented service, in contrast, provides the network layer processes with the equivalent of a 

reliable bit stream. 

 When connection-oriented service is used, transfers go through three distinct phases. 

 In the first phase, the connection is established by having both sides initialize variables and counters 

needed to keep track of which frames have been received and which ones have not.  

 In the second phase, one or more frames are actually transmitted.  

 In the third and final phase, the connection is released, freeing up the variables, buffers, and other 

resources used to maintain the connection. 

ELEMENTARY DATA LINK LAYER PROTOCOLS: 

An Unrestricted Simplex Protocol: 

 This protocol is simple protocol. 

 In this, Data are transmitted in one direction only.  

 Both the transmitting and receiving network layers are always ready.  

 Processing time can be ignored.  

 Infinite buffer space is available.  

 And best of all, the communication channel between the data link layers never damages or loses frames 

i.e., error free.  

 This thoroughly unrealistic protocol, which we will nickname ''utopia,''  

Figure: An unrestricted simplex protocol
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 The protocol consists of two distinct procedures, a sender and a receiver.  

 The sender runs in the data link layer of the source machine, and the receiver runs in the data link layer 

of the destination machine.  

 No sequence numbers or acknowledgements are used here, so MAX_SEQ is not needed.  

 The only event type possible is frame_arrival. 

 The sender is in an infinite while loop just pumping data out onto the line as fast as it can.  

 The body of the loop consists of three actions:  

o go fetch a packet from the  network layer, 

o construct an outbound frame using the variable s,  

o and send the frame on its way.  

 Only the info field of the frame is used by this protocol, because the other fields have to do with error 

and flow control and there are no errors or flow control restrictions here. 

 The receiver is equally simple.  

 Initially, it waits for something to happen, the only possibility being the arrival of an undamaged frame.  

 Eventually, the frame arrives and the procedure wait_for_event returns, with event set to frame_arrival.  

 The call to from_physical_layer removes the newly arrived frame from the hardware buffer and puts it 

in the variable r, where the receiver code can get at it.  

 Finally, the data portion is passed on to the network layer, and the data link layer settles back to wait for 

the next frame, effectively suspending itself until the frame arrives. 

 

 A Simplex Stop-and-Wait Protocol: 

 In this protocol we will drop the most unrealistic restriction used in protocol 1: the ability of the 

receiving network layer to process incoming data infinitely quickly.  

 The communication channel is still assumed to be error free however, and the data traffic is still 

simplex. 

The main problem we have to deal with here is how to prevent the sender from flooding the receiver with data 

faster than the latter is able to process them. If we assume that no automatic buffering and queueing are done 

within the receiver's hardware, the sender must never transmit a new frame until the old one has been fetched by 

from_physical_layer, lest the new one overwrite the old one. 
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A more general solution to this dilemma is to have the receiver provide feedback to the sender. After having 

passed a packet to its network layer, the receiver sends a little dummy frame back to the sender which, in effect, 

gives the sender permission to transmit the next frame.  

Protocols in which the sender sends one frame and then waits for an acknowledgement before proceeding are 

called stop-and-wait. Figure gives an example of a simplex stop-and-wait protocol. 

Figure: A simplex stop-and-wait protocol. 

 

The advantage of stop-and-wait is simplicity; each frame is checked and acknowledged before the next 

frame is sent.  

The disadvantage is inefficiency; stop-and-wait is slow. Each frame must travel all the way to the 

receiver and an acknowledgement must travel all the way to the receiver and an acknowledgement must travel 

all the way back before the next frame can be sent. The total transmission time is more when the distance 

between the devices are more. 

A Simplex Protocol for a Noisy Channel: 

 In this protocol unidirectional transmission 

 Noise channel 

 Limited buffer 

 Limited speed 

Protocols in which the sender waits for a positive acknowledgement before advancing to the next data item are 

often called PAR(positive Acknowledgement with retransmission) or ARQ(Automatic Repeat request). 

The idea of stop-and-wait protocol over noisy channel is straightforward, after transmitting one frame, the 

sender waits for an acknowledgement before transmitting the next frame. If the acknowledgement does not 

arrive after a certain period of time, the sending time out and retransmits the original frame. 

Following figure illustrates four different scenarios that result from this basic algorithm. This figure has 

time line, a common way to depict protocols behaviour. Figure (a) shows the situation in which the ACK is 

received before the time expires, figure (b) and (c) shows the situation in which the timeout fires too soon. 

Recall that by “lost”, we mean that the frame was corrupted while in transmit, that this corruption was detected 

by an error code on the receiver, and that the frame was subsequently discarded. 
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(a)                                                                                  (b) 

 

 

 

 

 

  

 

 

 

 

 

 

   (c)             (d) 

(a) The ACK is received before the timer expires   (b) The original frame is lost 

(c) The ACK is lost  (d) The time out fires too soon 

 Suppose, the sender sends a frame and the receiver acknowledges it, but the acknowledgement is either 

lost or delayed in arriving. This situation is illustrated in figure (c) and (d). In both cases, the sender time out 

and transmits the original frame, but the receiver will think that it is the next frame, since it correctly received 

and acknowledged the first frame. This has the potential to cause duplicate copies of a frame to be delivered. To 

address this problem, the header for a stop-and-wait protocol usually includes a 1-bit sequence number, that is, 

the sequence number can take on the values 0 and 1, the sequence numbers used for each frame alternative is 

shown in following figure. 

Thus, when the sender retransmits frame 0, the receiver can determine that it is seeing a second copy of frame 0 

rather than the first copy of frame 1 and therefore can ignore it. 
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Sender Receiver  
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Figure:. A positive acknowledgement with retransmission protocol 

Sender Receiver  
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SLIDING WINDOW PROTOCOLS: 

 In most practical situations, there is a need for transmitting data in both directions.  

 One way of achieving full-duplex data transmission is to have two separate communication channels and 

use each one for simplex data traffic.  

 If this is done, we have two separate physical circuits, each with a ”forward” channel (for data) and a 

”reverse” channel (for acknowledgements).  

 In both. Cases the bandwidth of the reverse channel is almost entirely wasted.  

 In effect, the user is paying for two circuits but using only the capacity of one. 

 A better idea is to use the same circuit for data in both directions. 

 After all, in protocols 2 and 3 it was already being used to transmit frames both ways, and the reverse 

channel has the same capacity as the forward channel.  

 In this model the data frames from A to B are intermixed with the acknowledgement frames from A to 

B.  

 By looking at the kind field in the header of an incoming frame, the receiver can tell whether the frame 

is data or acknowledgement. 

 When a data frame arrives, instead of immediately sending a separate control frame, the receiver 

restrains itself and waits until the network layer passes it the next packet.  

 The acknowledgement is attached to the outgoing data frame. 

 In effect, the acknowledgement gets a free ride on the next outgoing data frame.  

 The technique of temporarily delaying outgoing acknowledgements so that they can be hooked onto the 

next outgoing data frame is known as piggybacking. 

 The principal advantage of using piggybacking over having distinct acknowledgement frames is a better 

use of the available channel bandwidth.  

 The ack field in the frame header costs only a few bits, whereas a separate frame would need a header, 

the acknowledgement, and a checksum. It rarely costs more than a few bits.  

 However, piggybacking introduces a complication not present with separate acknowledgements.  

 How long should the data link layer wait for a packet onto which to piggyback the acknowledgement?  

 If the data link layer waits longer than the sender's timeout period, the frame will be retransmitted, 

defeating the whole purpose of having acknowledgements.  

 If the data link layer were an oracle and could foretell the future, it would know when the next network 

layer packet was going to come in and could decide either to wait for it or send a separate 

acknowledgement immediately, depending on how long the projected wait was going to be.  

 Of course, the data link layer cannot foretell the future, so it must resort to some ad hoc scheme, such as 

waiting a fixed number of milliseconds.  

 If a new packet arrives quickly, the acknowledgement is piggybacked onto it; otherwise, if no new 

packet has arrived by the end of this time period, the data link layer just sends a separate 

acknowledgement frame. 

 The next three protocols are bidirectional protocols that belong to a class called sliding window 

protocols.  

 The three differ among themselves in terms of efficiency, complexity, and buffer requirements.  

 In these, as in all sliding window protocols, each  outbound frame contains a sequence number, ranging 

from 0 up to some maximum. The maximum is usually  2
n
 – 1 so the sequence number fits exactly in an 

n-bit field. The stop-and-wait sliding window protocol uses      n = 1, restricting the sequence numbers to 

0 and 1, but more sophisticated versions can use arbitrary n. 

 The essence of all sliding window protocols is that at any instant of time, the sender maintains a set of 

sequence numbers corresponding to frames it is permitted to send. These frames are said to fall within 

the sending window.  

 The receiver also maintains receiving window corresponding to the set of frames it is permitted to 

accept. 

 The sequence numbers within the sender‟s window represent frames that have been sent or can be sent 

but are as yet not acknowledged.  

 Whenever a new packet arrives from the network layer, it is given the next highest sequence number, 

and the upper edge of the window is advanced by one.  

 When an acknowledgement comes in, one advances the lower edge. In this way the window 

continuously maintains a list of unacknowledged frames.  
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 Since frames currently within the sender's window may ultimately be lost or damaged in transit, the 

sender must keep all these frames in its memory for possible retransmission.  

 Thus, if the maximum window size is n, the sender needs n buffers to hold the unacknowledged frames.  

 If the window ever grows to its maximum size, the sending data link layer must forcibly shut off the 

network layer until another buffer becomes free. 

 The receiving data link layer's window corresponds to the frames it may accept.  

 Any frame falling outside the window is discarded without comment.  

 When a frame whose sequence number is equal to the lower edge of the window is received, it is passed 

to the network layer, an acknowledgement is generated, and the window is rotated by one.  

 Unlike the sender's window, the receiver's window always remains at its initial size.  

 Note that a window size of 1 means that the data link layer only accepts frames in order, but for larger 

windows this is not so.  

 The network layer, in contrast, is always fed data in the proper order, regardless of the data link layer's 

window size. 

 
 

Figure: A sliding window of size=1, with a 3-bit sequence number. 

(a) Initially (b) after the first frame has been sent (c) after the first frame has been received (d) after the 

first acknowledgement has been received 

A ONE BIT SLIDING WINDOW PROTOCOL: 

 In this sliding window protocol the maximum window size is 1.  

 Such a protocol uses stop-and-wait since the sender transmits a frame and waits for its 

acknowledgement before sending the next one. 

 Under normal circumstances, one of the two data link layers goes first and transmits the first frame.  

 In the event that both data link layers start off simultaneously, a peculiar situation arises.  

 The starting machine fetches the first packet from its network layer, builds a frame from it, and sends it.  

 When this frame arrives, the receiving data link layer checks to see if it is a duplicate, just as in protocol 

3.  

 If the frame is the one expected, it is passed to the network layer and the receiver‟s window is slid up.  

 The acknowledgement field contains the number of the last frame received without error.  

 If this number agrees with the sequence number of the frame the sender is trying to send, the sender 

knows it is done with the frame stored in buffer and can fetch the next packet from its network layer. 

 If the sequence number disagrees, it must continue trying to send the same frame. Whenever a frame is 

received, a frame is also sent back. 

 Now let us examine protocol 4 to see how resilient it is to pathological scenarios. 

 Assume that computer A is trying to send its frame 0 to computer B and that B is trying to send its frame 

0 to A. 

 Suppose that A sends a frame to B, but A's timeout interval is a little too short. Consequently, A may 

time out repeatedly, sending a series of identical frames, all with seq = 0 and ack = 1. 

 When the first valid frame arrives at computer B, it will be accepted and frame_expected will be set to 1. 

All the subsequent frames will be rejected because B is now expecting frames with sequence number 1, 
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not 0. Furthermore, since all the duplicates have ack = 1 and B is still waiting for an acknowledgement 

of 0, B will not fetch a new packet from its network layer. 

 After every rejected duplicate comes in, B sends A a frame containing seq = 0 and ack = 0. Eventually, 

one of these arrives correctly at A, causing A to begin sending the next packet. No combination of lost 

frames or premature timeouts can cause the protocol to deliver duplicate packets to either network layer, 

to skip a packet, or to deadlock. 

 However, a peculiar situation arises if both sides simultaneously send an initial packet. This 

synchronization difficulty is illustrated by Following figure.  

 In part (a), the normal operation of the protocol is shown. In (b) the peculiarity is illustrated. If B waits 

for A's first frame before sending one of its own, the sequence is as shown in (a), and every frame is 

accepted. However, if A and B simultaneously initiate communication, their first frames cross, and the 

data link layers then get into situation (b).  

 In (a) each frame arrival brings a new packet for the network layer; there are no duplicates. In (b) half of 

the frames contain duplicates, even though there are no transmission errors. Similar situations can occur 

as a result of premature timeouts, even when one side clearly starts first. In fact, if multiple premature 

timeouts occur, frames may be sent three or more times. 

 
Figure:(a) Normal case (b) Abnormal case. The notation is (seq,ack,packetnumber), an asterisk indicates 

where a network layer accepts a packet. 

A Protocol Using Go Back N 

 Until now we have made the tacit assumption that the transmission time required for a frame to 

arrive at the receiver plus the transmission time for the acknowledgement to come back is 

negligible. 

 Sometimes this assumption is clearly false.  

 In these situations the long round-trip time can have important implications for the efficiency of the 

bandwidth utilization.  

 Clearly, the combination of a long transit time, high bandwidth, and short frame length is disastrous in 

terms of efficiency. 

 The problem described above can be viewed as a consequence of the rule requiring a sender to wait for 

an acknowledgement before sending another frame.  

 If we relax that restriction, much better efficiency can be achieved.  

 Basically, the solution lies in allowing the sender to transmit up to „w‟ frames before blocking, instead 

of just 1.  

 With an appropriate choice of w the sender will be able to continuously transmit frames for a time equal 

to the round-trip transit time without filling up the window. 

 The need for a large window on the sending side occurs whenever the product of bandwidth x round-

trip-delay is large. 

 If the bandwidth is high, even for a moderate delay, the sender will exhaust its window quickly unless it 

has a large window.  

 If the delay is high, the sender will exhaust its window even for a moderate bandwidth.  

 The product of these two factors basically tells what the capacity of the pipe is, and the sender needs the 

ability to fill it without stopping in order to operate at peak efficiency. This technique is known as 

pipelining. 

 If the channel capacity is b bits/sec, the frame size l bits, and the round-trip propagation time R sec, the 

time required to transmit a single frame is l/b sec. After the last bit of a data frame has been sent, there is 
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a delay of R/2 before that bit arrives at the receiver and another delay of at least R/2 for the 

acknowledgement to come back, for a total delay of R. In stop-and-wait the line is busy for l/b and idle 

for R, giving 

   line utilization= l / ( l + bR) 

 Pipelining frames over an unreliable communication channel raises some serious issues.  

 What happens if a frame in the middle of a long stream is damaged or lost?  

 Large numbers of succeeding frames will arrive at the receiver before the sender even finds out that 

anything is wrong.  

 When a damaged frame arrives at the receiver, it obviously should be discarded, but what should the 

receiver do with all the correct frames following it?  

 The receiving data link layer is obligated to hand packets to the network layer in sequence. 

 Two basic approaches are available for dealing with errors in the presence of pipelining.  

 One way, called go back n, is for the receiver simply to discard all subsequent frames, sending no 

acknowledgements for the discarded frames.  

 This strategy corresponds to a receive window of size 1. 

  In other words, the data link layer refuses to accept any frame except the next one it must give to the 

network layer. 

 If the sender‟s window fills up before the timer runs out, the pipeline will begin to empty.  

 Eventually, the sender will time out and retransmit all unacknowledged frames in order, starting with the 

damaged or lost one.  

 This approach can waste a lot of bandwidth if the error rate is high. 

 
Figure: Pipelining and error recovery. Effect of an error when 

(a) receiver's window size is 1  

 The other general strategy for handling errors when frames are pipelined is called selective repeat. 

 When it is used, a bad frame that is received is discarded, but good frames received after it are buffered. 

  When the sender times out, only the oldest unacknowledged frame is retransmitted.  

 If that frame arrives correctly, the receiver can deliver to the network layer, in sequence, all the frames it 

has buffered.  

 Selective repeat is often combined with having the receiver send a negative  acknowledgement (NAK) 

when it detects an error 

 These two alternative approaches are trade-offs between bandwidth and data link layer buffer space. 

Depending on which resource is scarcer, one or the other can be used. 
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Figure: (b) receiver’s window size is large. 

A PROTOCOL USING SELECTIVE REPEAT: 

 Protocol 5 works well if errors are rare, but if the line is poor, it wastes a lot of bandwidth on 

retransmitted frames.  

 An alternative strategy for handling errors is to allow the receiver to accept and buffer the frames 

following a damaged or lost one.  

 Such a protocol does not discard frames merely because an earlier frame was damaged or lost. 

 In this protocol, both sender and receiver maintain a window of acceptable sequence numbers.  

 The sender‟s window size starts out at 0 and grows to some predefined maximum, MAX_SEQ.  

 The receiver‟s window, in contrast, is always fixed in size and equal to MAX_SEQ.  

 The receiver has a buffer reserved for each sequence number within its fixed window.  

 Associated with each buffer is a bit telling whether the buffer is full or empty.  

 Whenever a frame arrives, its sequence number is checked and see if it falls within the window.  

 If so and if it has not already been received, it is accepted and stored.  

 This action is taken without regard to whether or not it contains the next packet  expected by the 

network layer.  

 Of course, it must be kept within the data link layer and not passed to the network layer until all the 

lower-numbered frames have already been delivered to the network layer in the correct order  

 Nonsequential receive introduces certain problems not present in protocols in which frames are only 

accepted in order.  

 Suppose that we have a 3-bit sequence number, so that the sender is permitted to transmit up to seven 

frames before being required to wait for an acknowledgement. 

 Initially, the sender's and receiver's windows are as shown in Fig.(a).  

 The sender now transmits frames 0 through 6. The receiver's window allows it to accept any frame with 

sequence number between 0 and 6 inclusive.  

 All seven frames arrive correctly, so the receiver acknowledges them and advances its window to allow 

receipt of 7, 0, 1, 2, 3, 4, or 5, as shown in Fig.(b). All seven buffers are marked empty.  

 
(a) Initial situation with a window of size seven. 

(b) After seven frames have been sent and received but not acknowledged 

(c) Initial situation with a window size of four. 

(d) After four frames have been sent and received but not acknowledged.  

 Something happened wiping out all the acknowledgements.  

 The sender eventually times out and retransmits frame 0. When this frame arrives at the receiver, a 

check is made to see if it falls within the receiver's window.  

 Unfortunately, in Fig.(b) frame 0 is within the new window, so it will be accepted.  

 The receiver sends a piggybacked acknowledgement for frame 6, since 0 through 6 have been received. 

 The sender is happy to learn that all its transmitted frames did actually arrive correctly, so it advances its 

window and immediately sends frames 7, 0, 1, 2, 3, 4, and 5.  

 Frame 7 will be accepted by the receiver and its packet will be passed directly to the network layer.  

 Immediately thereafter, the receiving data link layer checks to see if it has a valid frame 0 already, 

discovers that it does, and passes the embedded packet to the network layer.  

 Consequently, the network layer gets an incorrect packet, and the protocol fails. 

 The essence of the problem is that after the receiver advanced its window, the new range of valid 

sequence numbers overlapped the old one.  

 Consequently, the following batch of frames might be either duplicates (if all the acknowledgements 

were lost) or new ones (if all the acknowledgements were received). The poor receiver has no way of 

distinguishing these two cases. 
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 The way out of this dilemma lies in making sure that after the receiver has advanced its window, there is 

no overlap with the original window.  

 To ensure that there is no overlap, the maximum window size should be at most half the range of the 

sequence numbers, as is done in Fig.(c) and Fig.(d).  

 For example, if 4 bits are used for sequence numbers, these will range from 0 to 15. Only eight 

unacknowledged frames should be outstanding at any instant. That way, if the receiver has just accepted 

frames 0 through 7 and advanced its window to permit acceptance of frames 8 through 15, it can 

unambiguously tell if subsequent frames are retransmissions (0 through 7) or new ones (8 through 15)  

 In general, the window size for protocol 6 will be (MAX_SEQ + 1)/2. Thus, for 3-bit sequence 

numbers, the window size is four. 

 An interesting question is: How many buffers must the receiver have? Under no conditions will it ever 

accept frames whose sequence numbers are below the lower edge of the window or frames whose 

sequence numbers are above the upper edge of the window.  

 Consequently, the number of buffers needed is equal to the window size, not to the range of sequence 

numbers.  

 In the above example of a 4-bit sequence number, eight buffers, numbered 0 through 7, are needed. 

When frame i arrives, it is put in buffer i mod 8.  

 The number of timers needed is equal to the number of buffers, not to the size of the sequence space. 

Effectively, a timer is associated with each buffer. When the timer runs out, the contents of the buffer 

are retransmitted. 

 In protocol 5, there is an implicit assumption that the channel is heavily loaded.  

 When a frame arrives, no acknowledgement is sent immediately. Instead, the acknowledgement is 

piggybacked onto the next outgoing data frame.  

 If the reverse traffic is light, the acknowledgement will be held up for a long period of time.  

 If there is a lot of traffic in one direction and no traffic in the other direction, only MAX_SEQ packets 

are sent, and then the protocol blocks, which is why we had to assume there was always some reverse 

traffic. 

 In protocol 6 this problem is fixed. After an in-sequence data frame arrives, an auxiliary timer is started 

by start_ack_timer.  

 If no reverse traffic has presented itself before this timer expires, a separate acknowledgement frame is 

sent.  

 An interrupt due to the auxiliary timer is called an ack_timeout event.  

 With this arrangement, one-directional traffic flow is now possible because the lack of reverse data 

frames onto which acknowledgements can be piggybacked is no longer an obstacle.  

 Only one auxiliary timer exists, and if start_ack_timer is called while the timer is running, it is reset to a 

full acknowledgement timeout interval.  

 It is essential that the timeout associated with the auxiliary timer be appreciably shorter than the 

timer used for timing out data frames.  

 This condition is required to make sure a correctly received frame is acknowledged early enough that the 

frame's retransmission timer does not expire and retransmit the frame. 

 Protocol 6 uses a more efficient strategy than protocol 5 for dealing with errors.  

 Whenever the receiver has reason to suspect that an error has occurred, it sends a negative 

acknowledgement (NAK) frame back to the sender.  

 Such a frame is a request for retransmission of the frame specified in the NAK.  

 There are two cases when the receiver should be suspicious: a damaged frame has arrived or a frame 

other than the expected one arrived (potential lost frame).  

 To avoid making multiple requests for retransmission of the same lost frame, the receiver should keep 

track of whether a NAK has already been sent for a given frame.  

 The variable no_nak in protocol 6 is true if no NAK has been sent yet for frame_expected.  

 If the NAK gets mangled or lost, no real harm is done, since the sender will eventually time out and 

retransmit the missing frame anyway.  

 If the wrong frame arrives after a NAK has been sent and lost, no_nak will be true and the auxiliary 

timer will be started. When it expires, an ACK will be sent to resynchronize the sender to the receiver's 

current status.  
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HDLC: 
High-level Data Link Control (HDLC) is a bit-oriented protocol for communication over point-to-point and 

multipoint links. . 

Configurations and Transfer Modes 

HDLC provides two common transfer modes that can be used in different configurations: normal response 

mode (NRM) and asynchronous balanced mode (ABM). 

 

Normal Response Mode 

In normal response mode (NRM), the station configuration is unbalanced. We have one primary station and 

multiple secondary stations. A primary station can send commands; a secondary station can only respond. The 

NRM is used for both point-to-point and multiple-point links, as shown in Figure  

 
Asynchronous Balanced Mode 

In asynchronous balanced mode (ABM), the configuration is balanced. The link is point-to-point, and each 

station can function as a primary and a secondary (acting as peers), as shown in Following Figure. 

 
Frames: 

 To provide the flexibility necessary to support all the options possible in the modes and configurations  

 HDLC defines three types of frames: information frames (I-frames), supervisory frames (S-frames), 

and unnumbered frames (U-frames).  

 Each type of frame serves as an envelope for the transmission of a different type of message. 

 I-frames are used to transport user data and control information relating to user data(piggybacking).  

 S-frames are used only to transport control information.  

 U-frames are reserved for system management. Information carried by U-frames is intended for 

managing the link itself.  

 
Figure: HDLC frames 

Fields: 

 Flag field. The flag field of an HDLC frame is an 8-bit sequence with the bit pattern 01111110 that identifies both 

the beginning and the end of a frame and serves as a synchronization pattern for the receiver. 
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 Address field. The second field of an HDLC frame contains the address of the secondary station. If a primary 

station created the frame, it contains a to address. If a secondary creates the frame, it contains a from address. An 

address field can be 1 byte or several bytes long, depending on the needs of the network. One byte can identify up 

to 128 stations. Larger networks require multiple-byte address fields. If the address field is only 1 byte, the last bit 

is always a 1. If the address is more than 1 byte, all bytes but the last one will end with 0; only the last will end 

with 1. Ending each intermediate byte with 0 indicates to the receiver that there are more address bytes to come. 

 Control field. The control field is a 1- or 2-byte segment of the frame used for flow and error control. The 

interpretation of bits in this field depends on the frame type.  

 Information field. The information field contains the user's data from the network layer or management 

information. Its length can vary from one network to another. 

 FCS field. The frame check sequence (FCS) is the HDLC error detection field. It can contain either a 2- or 4-byte 

ITU-T CRC. 

Control Field: 

 The control field determines the type of frame and defines its functionality.  

 
 

Figure: Control field format for the different frame types 

Control Field for I-Frames: 

 

 I-frames are designed to carry user data from the network layer.  

 In addition, they can include flow and error control information (piggybacking).  

 The subfields in the control field are used to define these functions.  

 The first bit defines the type. If the first bit of the control field is 0, this means the frame is an I-frame.  

 The next 3 bits, called N(S), define the sequence number of the frame. Note that with 3 bits, we can define a 

sequence number between 0 and 7;  

 The last 3 bits, called N(R), correspond to the acknowledgment number when piggybacking is used.  

 The single bit between N(S) and N(R) is called the P/F bit.  

 The P/F field is a single bit with a dual purpose.  

 It has meaning only when it is set (bit = 1) and can mean poll or final. It means poll when the frame is sent by a 

primary station to a secondary. It means final when the frame is sent by a secondary to a primary.  

Control Field for S-Frames: 

 

 Supervisory frames are used for flow and error control whenever piggybacking is either impossible or 

inappropriate.  

 S-frames do not have information fields.  

 If the first 2 bits of the control field is 10, this means the frame is an S-frame.  

 The last 3 bits, called N(R), corresponds to the acknowledgment number (ACK) or negative acknowledgment 

number (NAK) depending on the type of S-frame. 

 The 2 bits called code is used to define the type of S-frame itself. With 2 bits, we can have four types of S-frames, 

as described below: 

 Receive ready (RR). If the value of the code subfield is 00, it is an RR S-frame. This kind of frame 

acknowledges the receipt of a safe and sound frame or group of frames. In this case, the value N(R) field defines 

the acknowledgment number.  

 Receive not ready (RNR). If the value of the code subfield is 10, it is an RNR S-frame. This kind of frame is an 

RR frame with additional functions. It acknowledges the receipt of a frame or group of frames, and it announces 

that the receiver is busy and cannot receive more frames. It acts as a kind of congestion control mechanism by 

asking the sender to slow down. The value of N(R) is the acknowledgment number. 

 Reject (REJ). If the value of the code subfield is 01, it is a REJ  S-frame. This is a NAK frame. It is a NAK that 

can be used in Go-Back-N ARQ to improve the efficiency of the process by informing the sender, before the 
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sender time expires, that the last frame is lost or damaged. The value of N(R) is the negative acknowledgment 

number. 

 Selective reject (SREJ). If the value of the code subfield is 11, it is an SREJ S-frame. This is a NAK frame used 

in Selective Repeat ARQ. The value of N(R) is the negative acknowledgment number.  

Control Field for U-Frames: 

 

 Unnumbered frames are used to exchange session management and control information between connected 

devices.  

 Unlike S-frames, U-frames contain an information field, but one used for system management information, not 

user data.  

 As with S-frames, however, much of the information carried by U-frames is contained in codes included in the 

control field. U-frame codes are divided into two sections: a 2-bit prefix before the P/F bit and a 3-bit suffix after 

the P/F bit. Together, these two segments (5 bits) can be used to create up to 32 different types of U-frames.  

 

 
Table:  U-frame control command and response 

Example: Connection/Disconnection: 

 Figure shows how U-frames can be used for connection establishment and connection release.  

 Node A asks for a connection with a set asynchronous balanced mode (SABM) frame; node B gives a positive 

response with an unnumbered acknowledgment (UA) frame.  

 After these two exchanges, data can be transferred between the two nodes. 

 After data transfer, node A sends a DISC (disconnect) frame to release the connection; it is confirmed by node B 

responding with a VA (unnumbered acknowledgment).  

 

Figure: Example of connection and disconnection 

Example:Piggybacking without Error: 

 Figure shows an exchange using piggybacking. Node A begins the exchange of information with an I-frame 

numbered 0 followed by another I-frame numbered 1. Node B piggybacks its acknowledgment of both frames 
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onto an I-frame of its own. Node B‟s first I-frame is also numbered 0 [N(S) field] and contains a 2 in its N(R) 

field, acknowledging the receipt of A‟s frames 1 and 0 and indicating that it expects frame 2 to arrive next. Node 

B transmits its second and third I-frames (numbered 1 and 2) before accepting further frames from node A.  

 Its N(R) information, therefore, has not changed: B frames 1 and 2 indicate that node B is still expecting A‟s 

frame 2 to arrive next. Node A has sent all its data. Therefore, it cannot piggyback an acknowledgment onto an I-

frame and sends an S-frame instead. The RR code indicates that A is still ready to receive. The number 3 in the 

N(R) field tells B that frames 0, 1, and 2 have all been accepted and that A is now expecting frame number 3.  

 

Figure:  Example of piggybacking without error 

Example:Piggybacking with Error: 

 Figure shows an exchange in which a frame is lost. Node B sends three data frames (0, 1, and 2), but frame 1 is 

lost. When node A receives frame 2, it discards it and sends a REJ frame for frame 1. Note that the protocol being 

used is Go-Back-N with the special use of an REJ frame as a NAK frame.  

 The NAK frame does two things here: It confirms the receipt of frame 0 and declares that frame 1 and any 

following frames must be resent.  

 Node B, after receiving the REJ frame, resends frames 1 and 2. Node A acknowledges the receipt by sending an 

RR frame (ACK) with acknowledgment number 3.  

 

Figure: Piggybacking with Error 
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POINT-TO-POINT PROTOCOL: 

 Although HDLC is a general protocol that can be used for both point-to-point and multipoint 

configurations, one of the most common protocols for point-to-point access is the Point-to-Point 

Protocol (PPP).  

 Today, millions of Internet users who need to connect their home computers to the server of an Internet 

service provider use PPP.  

 The majority of these users have a traditional modem; they are connected to the Internet through a 

telephone line, which provides the services of the physical layer. But to control and manage the transfer 

of data, there is a need for a point-to-point protocol at the data link layer. PPP is by far the most 

common.  

 PPP provides several services: 

(a) PPP defines the format of the frame to be exchanged between devices. 

(b) PPP defines how two devices can negotiate the establishment of the link and the exchange of data. 

(c) PPP defines how network layer data are encapsulated in the data link frame. 

(d) PPP defines how two devices can authenticate each other. 

(e) PPP provides multiple network layer services supporting a variety of network layer protocols. 

(f) PPP provides connections over multiple links. 

(g) PPP provides network address configuration. This is particularly useful when a home user needs a 

temporary network address to connect to the Internet.  

 On the other hand, to keep PPP simple, several services are missing: 

(a) PPP does not provide flow control. A sender can send several frames one after another with no 

concern about overwhelming the receiver. 

(b) PPP has a very simple mechanism for error control. A CRC field is used to detect errors. If the frame 

is corrupted, it is silently discarded; the upper-layer protocol needs to take care of the problem. Lack 

of error control and sequence numbering may cause a packet to be received out of order. 

(c) PPP does not provide a sophisticated addressing mechanism to handle frames in a multipoint 

configuration.  

FRAMING: 

 PPP is a byte-oriented protocol. 

Frame Format 

 Flag. A PPP frame starts and ends with a 1-byte flag with the bit pattern 01111110.Although this pattern 

is the same as that used in HDLC, there is a big difference. PPP is a byte-oriented protocol; HDLC is a 

bit-oriented protocol. The flag is treated as a byte. 

 Address. The address field in this protocol is a constant value and set to 11111111. During negotiation, 

the two parties may agree to omit this byte. 

 Control. This field is set to the constant value 11000000. PPP does not provide any flow control. Error 

control is also limited to error detection. This means that this field is not needed at all, and again, the 

two parties can agree, during negotiation, to omit this byte. 

 Protocol. The protocol field defines what is being carried in the data field: either user data or other 

information. This field is by default 2 bytes long, but the two parties can agree to use only 1 byte. 

 

 
Figure: PPP frame format 

 Payload field. This field carries either the user data or other information. The data field is a sequence of 

bytes with the default of a maximum of 1500 bytes; but this can be changed during negotiation. 

 FCS. The frame check sequence (FCS) is simply a 2-byte or 4-byte standard CRC. 

Note: PPP is a byte-oriented protocol using byte stuffing with the escape byte 01111101.  

 

Transition Phases: 
 A PPP connection goes through phases which can be shown in a transition phase diagram  



29 
 

 

Figure: Transition phases 

 Dead. In the dead phase the link is not being used. There is no active carrier (at the physical layer) and the line is 

quiet. 

 Establish. When one of the nodes starts the communication, the connection goes into this phase. In this phase, 

options are negotiated between the two parties. If the negotiation is successful, the system goes to the 

authentication phase or directly to the networking phase. The link control protocol packets, are used for this 

purpose. Several packets may be exchanged here. 

 Authenticate. The authentication phase is optional; the two nodes may decide, during the establishment phase, 

not to skip this phase. However, if they decide to proceed with authentication, they send several authentication 

packets. If the result is successful, the connection goes to the networking phase; otherwise, it goes to the 

termination phase. 

 Network. In the network phase, negotiation for the network layer protocols takes place. PPP specifies that two 

nodes establish a network layer agreement before data at the network layer can be exchanged. The reason is that 

PPP supports multiple protocols at the network layer. If a node is running multiple protocols simultaneously at the 

network layer, the receiving node needs to know which protocol will receive the data.  

 Open. In the open phase, data transfer takes place. When a connection reaches this phase, the exchange of data 

packets can be started. The connection remains in this phase until one of the endpoints wants to terminate the 

connection. 

 Terminate. In the termination phase the connection is terminated. Several packets are exchanged between the two 

ends for house cleaning and closing the link.  

MULTIPLEXING: 

 Although PPP is a data link layer protocol, PPP uses another set of other protocols to establish the link, 

authenticate the parties involved, and carry the network layer data. Three sets of protocols are defined to make 

PPP powerful: the Link Control Protocol (LCP), two Authentication Protocols (APs), and several Network 

Control Protocols (NCPs). At any moment, a PPP packet can carry data from one of these protocols in its data 

field.  

 

Figure:  Multiplexing in PPP 

Link Control Protocol: 

 



30 
 
 The Link Control Protocol (LCP) is responsible for establishing, maintaining, configuring, and terminating links.  

 It also provides negotiation mechanisms to set options between the two endpoints.  

 Both endpoints of the link must reach an agreement about the options before the link can be established.  

 All LCP packets are carried in the payload field of the PPP frame with the protocol field set to C021 in 

hexadecimal. 

 The code field defines the type of LCP packet. There are 11 types of packets  

 

 
Figure :  LCP packet encapsulated in a frame  

 
Table:   LCP packets 

 There are three categories of packets.  

 The first category, comprising the first four packet types, is used for link configuration during the establish phase.  

 The second category, comprising packet types 5 and 6, is used for link termination during the termination phase.  

 The last five packets are used for link monitoring and debugging. 

 The ID field holds a value that matches a request with a reply.  

 One endpoint inserts a value in this field, which will be copied into the reply packet.  

 The length field defines the length of the entire LCP packet.  

 The information field contains information, such as options, needed for some LCP packets. 

 There are many options that can be negotiated between the two endpoints.  

 Options are inserted in the information field of the configuration packets.  

 In this case, the information field is divided into three fields: option type, option length, and option data.  

We list some of the most common options in Table  

 
Authentication Protocols: 

 Authentication plays a very important role in PPP because PPP is designed for use over dial-up links where 

verification of user identity is necessary.  

 Authentication means validating the identity of a user who needs to access a set of resources.  

 PPP has created two protocols for authentication: Password Authentication Protocol and Challenge 

Handshake Authentication Protocol.  

 Note that these protocols are used during the authentication phase.  

PAP The Password Authentication Protocol (PAP) is a simple authentication procedure with a two-step process: 

1. The user who wants to access a system sends an authentication identification (usually the user name) and a 

password. 

2. The system checks the validity of the identification and password and either accepts or denies connection.  

3. Figure shows the three types of packets used by PAP and how they are actually exchanged.  

4. When a PPP frame is carrying any PAP packets, the value of the protocol field is OxC023.  

5. The three PAP packets are authenticate-request, authenticate-ack, and authenticate-nak.  

6. The first packet is used by the user to send the user name and password. 

7. The second is used by the system to allow access.  

8. The third is used by the system to deny access.  
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Figure: PAP packets encapsulated in a PPP frame 

CHAP The Challenge Handshake Authentication Protocol (CHAP): 

 It is a three-way hand-shaking authentication protocol that provides greater security than PAP.  

 In this method, the password is kept secret; it is never sent online. 

1. The system sends the user a challenge packet containing a challenge value, usually a few bytes. 

2. The user applies a predefined function that takes the challenge value and the user„s own password and creates a 

result. The user sends the result in the response packet to the system. 

3. The system does the same. It applies the same function to the password of the user and the challenge value to 

create a result. If the result created is the same as the result sent in the response packet, access is granted; 

otherwise, it is denied. CHAP is more secure than PAP, especially if the system continuously changes the 

challenge value. Even if the intruder learns the challenge value and the result, the password is still secret. Figure 

shows the packets and how they are used.  

 
Figure : CHAP packets encapsulated in a PPP frame  

 CHAP packets are encapsulated in the PPP frame with the protocol value C223 in hexadecimal.  

 There are four CHAP packets: challenge, response, success, and failure. 

 The first packet is used by the system to send the challenge value.  

 The second is used by the user to return the result of the calculation.  

 The third is used by the system to allow access to the system.  

 The fourth is used by the system to deny access to the system.  

Network Control Protocols: 
 PPP is a multiple-network layer protocol. It can carry a network layer data packet from protocols defined by the 

Internet, OSI, Xerox, DECnet, AppleTalk, Novel, and so on. 

 To do this, PPP has defined a specific Network Control Protocol for each network protocol. 

 For example, IPCP (Internet Protocol Control Protocol) configures the link for carrying IP data packets.  

 IPCP One NCP protocol is the Internet Protocol Control Protocol (IPCP). This protocol configures the link used 

to carry IP packets in the Internet. 

  IPCP is especially of interest to us.  
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Figure:  IPCP packet encapsulated in PPP frame  

 
Table:  Code value for IPCP packets 

 Other Protocols There are other NCP protocols for other network layer protocols. 

 The OSI Network Layer Control Protocol has a protocol field value of 8023; the Xerox NS IDP Control Protocol 

has a protocol field value of 8025; and so on.  

 The value of the code and the format of the packets for these other protocols are the same as shown in Table.  

DATA FROM THE NETWORK LAYER: 

 After the network layer configuration is completed by one of the NCP protocols, the users can exchange data 

packets from the network layer.  

 Here again, there are different protocol fields for different network layers.  

 For example, if PPP is carrying data from the IP network layer, the field value is 0021. If PPP is carrying data 

from the OSI network layer, the value of the protocol field is 0023, and so on. Figure shows the frame for IP.  

 
Figure:  IP datagram encapsulated in a PPP frame  

Multilink PPP: 

 PPP was originally designed for a single-channel point-to-point physical link.  

 The availability of multiple channels in a single point-to-point link motivated the development of Multilink PPP.  

 In this case, a logical PPP frame is divided into several actual PPP frames.  

 A segment of the logical frame is carried in the payload of an actual PPP frame, as shown in Figure.  

 To show that the actual PPP frame is carrying a fragment of a logical PPP frame, the protocol field is set to 

Ox003d. This new development adds complexity. 

 For example, a sequence number needs to be added to the actual PPP frame to show a fragment's position in the 

logical frame.  

 

Figure:  Multilink PPP 

 

 

 

 


